Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Related tags

Deep LearningFeedBack
Overview

Kaggle Feedback Prize - Evaluating Student Writing 15th solution


First of all, I would like to thank the excellent notebooks and discussions from https://www.kaggle.com/abhishek/two-longformers-are-better-than-1 @abhishek https://www.kaggle.com/c/feedback-prize-2021/discussion/308992 @hengck23 https://www.kaggle.com/librauee/infer-fast-ensemble-models @librauee I learned a lot from their work. This is the second kaggle competition we have participated in, and although we are one short of gold, we are already very satisfied. In our work, I am mainly responsible for the training of the model, and @yscho1 is mainly responsible for the post-processing.

Highlight

  • In the final commit, we ensemble 6 debreta_xlarge, 6 longformer-large-4096, 2 funnel-large, 2 deberta-v3-large and 2 deberta-large. We set the max_length to 1600. We use Fast Gradient Method(FGM) to improve robustness and use Exponential Moving Average(EMA) to smooth training.

  • Use optuna to learn all the hyperparameters in the post processing stage.

  • CV results show that deberta-xlarge(0.7092) > deberta-large(0.7025) > deberta-large-v3(0.6842) > funnel-large(0.6798) = longformer-large-4096(0.6748)

  • Merge consecutive predictions with same label, for example we merge [B-Lead, I-Lead, I-Lead], [B-Lead, I-Lead] into one single prediction. We only do this operation when the label is in ['Lead', 'Position', 'Concluding', 'Rebuttal'], since there are not consecutive predictions for these labels in the training data.

  • Filter "Lead" and "Concluding". There are only one Lead label and Concluding Label in almost all the trainging data, so we only keep the predictions that has higher score than threshold. Besides, we found that merge two Lead can increase cv further.

concluding_df = sorted(concluding_df, key=lambda x: np.mean(x[4]), reverse=True)
new_begin = min(concluding_df[0][3][0], concluding_df[1][3][0])
new_end = max(concluding_df[0][3][-1], concluding_df[1][3][-1])
  • Since the score is based on the overlap between prediction and ground truth, so we extend the predictions from word_list[begin:end] to word_list[begin - 1: end + 1]. Hoping the extended predictions can better hit ground truth and accross the 50% threshold.

  • Scaling. The probabilities of each token are multiplied by a factor. The factors are obtained through genetic algorithm search.

  • There are some other attempts but didn't work well. These attempts are included in the inference notebook.

Code

# Model Training
bash script/run_Base_train_gpu.sh
# Model Predict
bash script/run_predict.sh
# Params Learning
bash script/run_params_test.sh
Owner
Lingyuan Zhang
Lingyuan Zhang
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022