Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Overview

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*.

Visually-grounded spoken language datasets can enable models to learn cross-modal correspondences with very weak supervision. However, modern audio-visual datasets contain biases that undermine the real-world performance of models trained on that data. We introduce Spoken ObjectNet, which is designed to remove some of these biases and provide a way to better evaluate how effectively models will perform in real-world scenarios. This dataset expands upon ObjectNet, which is a bias-controlled image dataset that features similar image classes to those present in ImageNet.

*Note: please see the ArXiv version for additional results on the test set.

Setup

  1. Clone this module and any submodules: git clone --recurse-submodules [email protected]:iapalm/Spoken-ObjectNet.git
  2. Follow the directions in data.md to set up ObjectNet images and the Spoken ObjectNet-50k corpus
  3. This code was tested with PyTorch 1.9 with CUDA 10.2 and Python 3.8.8.
  4. To train the models with the code as-is, we use 2 GPUs with 11 Gb of memory. A single GPU can be used, but the batch size or other parameters should be reduced.
  5. Note about the speed of this code: This code will work as-is on the Spoken ObjectNet audio captions, but the speed could be greatly improved. A main bottleneck is the resampling of the audio wav files from 48 kHz to 16 kHz, which is done with librosa here. We suggest to pre-process the audio files into the desired format first, and then remove this line or the on-the-fly spectrogram conversion entirely. We estimate the speed will improve 5x.
  6. On our servers, the zero-shot evaluation takes around 20-30 minutes and training takes around 4-5 days. As mentioned in the previous point, this could be improved with audio pre-processing.

Running Experiments

We support 3 experiments that can be used as baselines for future work:

  • (1) Zero-shot evaluation of the ResDAVEnet-VQ model trained on Places-400k [2].
  • (2) Fine-tuning the ResDAVEnet-VQ model trained on Places-400k on Spoken ObjectNet with a frozen image branch .
  • (3) Training the ResDAVEnet-VQ model from scratch on Spoken ObjectNet with a frozen image branch.
  • Note: fine-tuning the image branch on Spoken ObjectNet is not permitted, but fine-tuning the audio branch is allowed.

Zero-shot transfer from Places-400k

  • Download and extract the directory containing the model weights from this link. Keep the folder named RDVQ_00000 and move it to the exps directory.
  • In scripts/train.sh, change data_dt to data/Spoken-ObjectNet-50k/metadata/SON-test.json to evaluate on the test set instead of the validation set.
  • Run the following command for zero-shot evaluation: source scripts/train.sh 00000 RDVQ_00000 "--resume True --mode eval"
  • The results are printed in exps/RDVQ_00000_transfer/train.out

Fine-tune the model from Places-400k

  • Download and extract the directory containing the args.pkl file which specifies the fine-tuning arguments. The directory at this link contains the args.pkl file as well as the model weights.
  • The model weights of the fine-tuned model are provided for easier evaluation. Run the following command to evaluate the model using those weights: source scripts/train.sh 00000 RDVQ_00000_finetune "--resume True --mode eval"
  • Otherwise, to fine-tune the model yourself, first move the model weights to a new folder model_dl, then make a new folder model to save the new weights, and then run the following command: source scripts/train.sh 00000 RDVQ_00000_finetune "--resume True". This still require the args.pkl file mentioned previously.
  • Plese note the value of data_dt in scripts/train.sh. The code saves the best performing model during training, which is why it should be set to the validation set during training. During evaluation, it loads the best performing model, which is why it should be set to the test set during evaluation.

Train the model from scratch on Spoken ObjectNet

  • Run the following command to train the model from scratch: source scripts/train.sh 00000 RDVQ_scratch_frozen "--lr 0.001 --freeze-image-model True"
  • The model weights can be evaulated with source scripts/train.sh 00000 RDVQ_scratch_frozen "--resume True --mode eval"
  • We also provide the trained model weights at this link.
  • Plese note the value of data_dt in scripts/train.sh. The code saves the best performing model during training, which is why it should be set to the validation set during training. During evaluation, it loads the best performing model, which is why it should be set to the test set during evaluation.

Contact

If You find any problems or have any questions, please open an issue and we will try to respond as soon as possible. You can also try emailing the first corresponding author.

References

[1] Palmer, I., Rouditchenko, A., Barbu, A., Katz, B., Glass, J. (2021) Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. Proc. Interspeech 2021, 3650-3654, doi: 10.21437/Interspeech.2021-245

[2] David Harwath*, Wei-Ning Hsu*, and James Glass. Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech. Proc. International Conference on Learning Representations (ICLR), 2020

Spoken ObjectNet - Bibtex:

@inproceedings{palmer21_interspeech,
  author={Ian Palmer and Andrew Rouditchenko and Andrei Barbu and Boris Katz and James Glass},
  title={{Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
  pages={3650--3654},
  doi={10.21437/Interspeech.2021-245}
}
Owner
Ian Palmer
Ian Palmer
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023