ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Overview

Benchmark for Tuning Accuracy and Efficiency

Overview

The benchmark includes our efforts in using Colossal-AI to train different tasks to achieve SOTA results. We are interested in both validataion accuracy and training speed, and prefer larger batch size to take advantage of more GPU devices. For example, we trained vision transformer with batch size 512 on CIFAR10 and 4096 on ImageNet1k, which are basically not used in existing works. Some of the results in the benchmark trained with 8x A100 are shown below.

Task Model Training Time Top-1 Accuracy
CIFAR10 ViT-Lite-7/4 ~ 16 min ~ 90.5%
ImageNet1k ViT-S/16 ~ 16.5 h ~ 74.5%

The train.py script in each task runs training with the specific configuration script in configs/ for different parallelisms. Supported parallelisms include data parallel only (ends with vanilla), 1D (ends with 1d), 2D (ends with 2d), 2.5D (ends with 2p5d), 3D (ends with 3d).

Each configuration scripts basically includes the following elements, taking ImageNet1k task as example:

TOTAL_BATCH_SIZE = 4096
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3

NUM_EPOCHS = 300
WARMUP_EPOCHS = 32

# data parallel only
TENSOR_PARALLEL_SIZE = 1    
TENSOR_PARALLEL_MODE = None

# parallelism setting
parallel = dict(
    pipeline=1,
    tensor=dict(mode=TENSOR_PARALLEL_MODE, size=TENSOR_PARALLEL_SIZE),
)

fp16 = dict(mode=AMP_TYPE.TORCH, ) # amp setting

gradient_accumulation = 2 # accumulate 2 steps for gradient update

BATCH_SIZE = TOTAL_BATCH_SIZE // gradient_accumulation # actual batch size for dataloader

clip_grad_norm = 1.0 # clip gradient with norm 1.0

Upper case elements are basically what train.py needs, and lower case elements are what Colossal-AI needs to initialize the training.

Usage

To start training, use the following command to run each worker:

$ DATA=/path/to/dataset python train.py --world_size=WORLD_SIZE \
                                        --rank=RANK \
                                        --local_rank=LOCAL_RANK \
                                        --host=MASTER_IP_ADDRESS \
                                        --port=MASTER_PORT \
                                        --config=CONFIG_FILE

It is also recommended to start training with torchrun as:

$ DATA=/path/to/dataset torchrun --nproc_per_node=NUM_GPUS_PER_NODE \
                                 --nnodes=NUM_NODES \
                                 --node_rank=NODE_RANK \
                                 --master_addr=MASTER_IP_ADDRESS \
                                 --master_port=MASTER_PORT \
                                 train.py --config=CONFIG_FILE
Owner
HPC-AI Tech
We are a global team to help you train and deploy your AI models
HPC-AI Tech
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023