ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Overview

Benchmark for Tuning Accuracy and Efficiency

Overview

The benchmark includes our efforts in using Colossal-AI to train different tasks to achieve SOTA results. We are interested in both validataion accuracy and training speed, and prefer larger batch size to take advantage of more GPU devices. For example, we trained vision transformer with batch size 512 on CIFAR10 and 4096 on ImageNet1k, which are basically not used in existing works. Some of the results in the benchmark trained with 8x A100 are shown below.

Task Model Training Time Top-1 Accuracy
CIFAR10 ViT-Lite-7/4 ~ 16 min ~ 90.5%
ImageNet1k ViT-S/16 ~ 16.5 h ~ 74.5%

The train.py script in each task runs training with the specific configuration script in configs/ for different parallelisms. Supported parallelisms include data parallel only (ends with vanilla), 1D (ends with 1d), 2D (ends with 2d), 2.5D (ends with 2p5d), 3D (ends with 3d).

Each configuration scripts basically includes the following elements, taking ImageNet1k task as example:

TOTAL_BATCH_SIZE = 4096
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3

NUM_EPOCHS = 300
WARMUP_EPOCHS = 32

# data parallel only
TENSOR_PARALLEL_SIZE = 1    
TENSOR_PARALLEL_MODE = None

# parallelism setting
parallel = dict(
    pipeline=1,
    tensor=dict(mode=TENSOR_PARALLEL_MODE, size=TENSOR_PARALLEL_SIZE),
)

fp16 = dict(mode=AMP_TYPE.TORCH, ) # amp setting

gradient_accumulation = 2 # accumulate 2 steps for gradient update

BATCH_SIZE = TOTAL_BATCH_SIZE // gradient_accumulation # actual batch size for dataloader

clip_grad_norm = 1.0 # clip gradient with norm 1.0

Upper case elements are basically what train.py needs, and lower case elements are what Colossal-AI needs to initialize the training.

Usage

To start training, use the following command to run each worker:

$ DATA=/path/to/dataset python train.py --world_size=WORLD_SIZE \
                                        --rank=RANK \
                                        --local_rank=LOCAL_RANK \
                                        --host=MASTER_IP_ADDRESS \
                                        --port=MASTER_PORT \
                                        --config=CONFIG_FILE

It is also recommended to start training with torchrun as:

$ DATA=/path/to/dataset torchrun --nproc_per_node=NUM_GPUS_PER_NODE \
                                 --nnodes=NUM_NODES \
                                 --node_rank=NODE_RANK \
                                 --master_addr=MASTER_IP_ADDRESS \
                                 --master_port=MASTER_PORT \
                                 train.py --config=CONFIG_FILE
Owner
HPC-AI Tech
We are a global team to help you train and deploy your AI models
HPC-AI Tech
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
LBK 20 Dec 02, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022