PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Related tags

Deep LearningCI-ToD
Overview

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

License: MIT

This repository contains the PyTorch implementation and the data of the paper: Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System. Libo Qin, Tianbao Xie, Shijue Huang, Qiguang Chen, Xiao Xu, Wanxiang Che. EMNLP2021.[PDF] .

This code has been written using PyTorch >= 1.1. If you use any source codes or the datasets included in this toolkit in your work, please cite the following paper. The bibtex are listed below:

@article{qin2021CIToD,
  title={Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System},
  author={Qin, Libo and Xie, Tianbao and Huang, Shijue and Chen, Qiguang and Xu, Xiao and Che, Wanxiang},
  journal={arXiv preprint arXiv:2109.11292},
  year={2021}
}

Abstract

Consistency Identification has obtained remarkable success on open-domain dialogue, which can be used for preventing inconsistent response generation. However, in contrast to the rapid development in open-domain dialogue, few efforts have been made to the task-oriented dialogue direction. In this paper, we argue that consistency problem is more urgent in task-oriented domain. To facilitate the research, we introduce CI-ToD, a novel dataset for Consistency Identification in Task-oriented Dialog system. In addition, we not only annotate the single label to enable the model to judge whether the system response is contradictory, but also provide more finegrained labels (i.e., Dialogue History Inconsistency(HI), User Query Inconsistency(QI) and Knowledge Base Inconsistency(KBI), which are as shown in the figure below) to encourage model to know what inconsistent sources lead to it. Empirical results show that state-of-the-art methods only achieve performance of 51.3%, which is far behind the human performance of 93.2%, indicating that there is ample room for improving consistency identification ability. Finally, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide guidance for future directions.

Dataset

We construct the CI-ToD dataset based on the KVRET dataset. We release our dataset together with the code, you can find it under data.

The basic format of the dataset is as follows, including multiple rounds of dialogue, knowledge base and related inconsistency annotations (KBI, QI, HI):

[
    {
        "id": 74,
        "dialogue": [
            {
                "turn": "driver",
                "utterance": "i need to find out the date and time for my swimming_activity"
            },
            {
                "turn": "assistant",
                "utterance": "i have two which one i have one for the_14th at 6pm and one for the_12th at 7pm"
            }
        ],
        "scenario": {
            "kb": {
                "items": [
                    {
                        "date": "the_11th",
                        "time": "9am",
                        "event": "tennis_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "father"
                    },
                    {
                        "date": "the_18th",
                        "time": "2pm",
                        "event": "football_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "martha"
                    },
                    .......
                ]
            },
            "qi": "0",
            "hi": "0",
            "kbi": "0"
        },
        "HIPosition": []
    }

KBRetriever_DC

Dataset QI HI KBI SUM
calendar_train.json 174 56 177 595
calendar_dev.json 28 9 24 74
calendar_test.json 23 8 21 74
navigate_train.json 453 386 591 1110
navigate_dev.json 55 41 69 139
navigate_test.json 48 44 71 138
weather_new_train.json 631 132 551 848
weather_new_dev.json 81 14 66 106
weather_new_test.json 72 12 69 106

Model

Here is the model structure of non pre-trained model (a) and pre-trained model (b and c).

Preparation

we provide some pre-trained baselines on our proposed CI-TOD dataset, the packages we used are listed follow:

-- scikit-learn==0.23.2
-- numpy=1.19.1
-- pytorch=1.1.0
-- fitlog==0.9.13
-- tqdm=4.49.0
-- sklearn==0.0
-- transformers==3.2.0

We highly suggest you using Anaconda to manage your python environment. If so, you can run the following command directly on the terminal to create the environment:

conda env create -f py3.6pytorch1.1_.yaml

How to run it

The script train.py acts as a main function to the project, you can run the experiments by the following commands:

python -u train.py --cfg KBRetriver_DC/KBRetriver_DC_BERT.cfg

The parameters we use are configured in the configure. If you need to adjust them, you can modify them in the relevant files or append parameters to the command.

Finally, you can check the results in logs folder.Also, you can run fitlog command to visualize the results:

fitlog log logs/

Baseline Experiment Result

All experiments were performed in TITAN_XP except for BART, which was performed on Tesla V100 PCIE 32 GB. These may not be the best results. Therefore, the parameters can be adjusted to obtain better results.

KBRetriever_DC

Baseline category Baseline method QI F1 HI F1 KBI F1 Overall Acc
Non Pre-trained Model ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
Pre-trained Model BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Human Performance 0.962 0.805 0.920 0.932

Leaderboard

If you submit papers with these datasets, please consider sending a pull request to merge your results onto the leaderboard. By submitting, you acknowledge that your results are obtained purely by training on the training datasets and tuned on the dev datasets (e.g. you only evaluted on the test set once).

KBRetriever_DC

Baseline method QI F1 HI F1 KBI F1 Overall Acc
ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Performance 0.962 0.805 0.920 0.932

Acknowledgement

Thanks for patient annotation from all taggers Lehan Wang, Ran Duan, Fuxuan Wei, Yudi Zhang, Weiyun Wang!

Thanks for supports and guidance from our adviser Wanxiang Che!

Contact us

  • Just feel free to open issues or send us email(me, Tianbao) if you have any problems or find some mistakes in this dataset.
Owner
Libo Qin
Ph.D. Candidate in Harbin Institute of Technology @HIT-SCIR. Homepage: http://ir.hit.edu.cn/~lbqin/
Libo Qin
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022