PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Related tags

Deep LearningCI-ToD
Overview

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

License: MIT

This repository contains the PyTorch implementation and the data of the paper: Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System. Libo Qin, Tianbao Xie, Shijue Huang, Qiguang Chen, Xiao Xu, Wanxiang Che. EMNLP2021.[PDF] .

This code has been written using PyTorch >= 1.1. If you use any source codes or the datasets included in this toolkit in your work, please cite the following paper. The bibtex are listed below:

@article{qin2021CIToD,
  title={Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System},
  author={Qin, Libo and Xie, Tianbao and Huang, Shijue and Chen, Qiguang and Xu, Xiao and Che, Wanxiang},
  journal={arXiv preprint arXiv:2109.11292},
  year={2021}
}

Abstract

Consistency Identification has obtained remarkable success on open-domain dialogue, which can be used for preventing inconsistent response generation. However, in contrast to the rapid development in open-domain dialogue, few efforts have been made to the task-oriented dialogue direction. In this paper, we argue that consistency problem is more urgent in task-oriented domain. To facilitate the research, we introduce CI-ToD, a novel dataset for Consistency Identification in Task-oriented Dialog system. In addition, we not only annotate the single label to enable the model to judge whether the system response is contradictory, but also provide more finegrained labels (i.e., Dialogue History Inconsistency(HI), User Query Inconsistency(QI) and Knowledge Base Inconsistency(KBI), which are as shown in the figure below) to encourage model to know what inconsistent sources lead to it. Empirical results show that state-of-the-art methods only achieve performance of 51.3%, which is far behind the human performance of 93.2%, indicating that there is ample room for improving consistency identification ability. Finally, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide guidance for future directions.

Dataset

We construct the CI-ToD dataset based on the KVRET dataset. We release our dataset together with the code, you can find it under data.

The basic format of the dataset is as follows, including multiple rounds of dialogue, knowledge base and related inconsistency annotations (KBI, QI, HI):

[
    {
        "id": 74,
        "dialogue": [
            {
                "turn": "driver",
                "utterance": "i need to find out the date and time for my swimming_activity"
            },
            {
                "turn": "assistant",
                "utterance": "i have two which one i have one for the_14th at 6pm and one for the_12th at 7pm"
            }
        ],
        "scenario": {
            "kb": {
                "items": [
                    {
                        "date": "the_11th",
                        "time": "9am",
                        "event": "tennis_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "father"
                    },
                    {
                        "date": "the_18th",
                        "time": "2pm",
                        "event": "football_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "martha"
                    },
                    .......
                ]
            },
            "qi": "0",
            "hi": "0",
            "kbi": "0"
        },
        "HIPosition": []
    }

KBRetriever_DC

Dataset QI HI KBI SUM
calendar_train.json 174 56 177 595
calendar_dev.json 28 9 24 74
calendar_test.json 23 8 21 74
navigate_train.json 453 386 591 1110
navigate_dev.json 55 41 69 139
navigate_test.json 48 44 71 138
weather_new_train.json 631 132 551 848
weather_new_dev.json 81 14 66 106
weather_new_test.json 72 12 69 106

Model

Here is the model structure of non pre-trained model (a) and pre-trained model (b and c).

Preparation

we provide some pre-trained baselines on our proposed CI-TOD dataset, the packages we used are listed follow:

-- scikit-learn==0.23.2
-- numpy=1.19.1
-- pytorch=1.1.0
-- fitlog==0.9.13
-- tqdm=4.49.0
-- sklearn==0.0
-- transformers==3.2.0

We highly suggest you using Anaconda to manage your python environment. If so, you can run the following command directly on the terminal to create the environment:

conda env create -f py3.6pytorch1.1_.yaml

How to run it

The script train.py acts as a main function to the project, you can run the experiments by the following commands:

python -u train.py --cfg KBRetriver_DC/KBRetriver_DC_BERT.cfg

The parameters we use are configured in the configure. If you need to adjust them, you can modify them in the relevant files or append parameters to the command.

Finally, you can check the results in logs folder.Also, you can run fitlog command to visualize the results:

fitlog log logs/

Baseline Experiment Result

All experiments were performed in TITAN_XP except for BART, which was performed on Tesla V100 PCIE 32 GB. These may not be the best results. Therefore, the parameters can be adjusted to obtain better results.

KBRetriever_DC

Baseline category Baseline method QI F1 HI F1 KBI F1 Overall Acc
Non Pre-trained Model ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
Pre-trained Model BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Human Performance 0.962 0.805 0.920 0.932

Leaderboard

If you submit papers with these datasets, please consider sending a pull request to merge your results onto the leaderboard. By submitting, you acknowledge that your results are obtained purely by training on the training datasets and tuned on the dev datasets (e.g. you only evaluted on the test set once).

KBRetriever_DC

Baseline method QI F1 HI F1 KBI F1 Overall Acc
ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Performance 0.962 0.805 0.920 0.932

Acknowledgement

Thanks for patient annotation from all taggers Lehan Wang, Ran Duan, Fuxuan Wei, Yudi Zhang, Weiyun Wang!

Thanks for supports and guidance from our adviser Wanxiang Che!

Contact us

  • Just feel free to open issues or send us email(me, Tianbao) if you have any problems or find some mistakes in this dataset.
Owner
Libo Qin
Ph.D. Candidate in Harbin Institute of Technology @HIT-SCIR. Homepage: http://ir.hit.edu.cn/~lbqin/
Libo Qin
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
113 Nov 28, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022