PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Related tags

Deep LearningCI-ToD
Overview

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

License: MIT

This repository contains the PyTorch implementation and the data of the paper: Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System. Libo Qin, Tianbao Xie, Shijue Huang, Qiguang Chen, Xiao Xu, Wanxiang Che. EMNLP2021.[PDF] .

This code has been written using PyTorch >= 1.1. If you use any source codes or the datasets included in this toolkit in your work, please cite the following paper. The bibtex are listed below:

@article{qin2021CIToD,
  title={Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System},
  author={Qin, Libo and Xie, Tianbao and Huang, Shijue and Chen, Qiguang and Xu, Xiao and Che, Wanxiang},
  journal={arXiv preprint arXiv:2109.11292},
  year={2021}
}

Abstract

Consistency Identification has obtained remarkable success on open-domain dialogue, which can be used for preventing inconsistent response generation. However, in contrast to the rapid development in open-domain dialogue, few efforts have been made to the task-oriented dialogue direction. In this paper, we argue that consistency problem is more urgent in task-oriented domain. To facilitate the research, we introduce CI-ToD, a novel dataset for Consistency Identification in Task-oriented Dialog system. In addition, we not only annotate the single label to enable the model to judge whether the system response is contradictory, but also provide more finegrained labels (i.e., Dialogue History Inconsistency(HI), User Query Inconsistency(QI) and Knowledge Base Inconsistency(KBI), which are as shown in the figure below) to encourage model to know what inconsistent sources lead to it. Empirical results show that state-of-the-art methods only achieve performance of 51.3%, which is far behind the human performance of 93.2%, indicating that there is ample room for improving consistency identification ability. Finally, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide guidance for future directions.

Dataset

We construct the CI-ToD dataset based on the KVRET dataset. We release our dataset together with the code, you can find it under data.

The basic format of the dataset is as follows, including multiple rounds of dialogue, knowledge base and related inconsistency annotations (KBI, QI, HI):

[
    {
        "id": 74,
        "dialogue": [
            {
                "turn": "driver",
                "utterance": "i need to find out the date and time for my swimming_activity"
            },
            {
                "turn": "assistant",
                "utterance": "i have two which one i have one for the_14th at 6pm and one for the_12th at 7pm"
            }
        ],
        "scenario": {
            "kb": {
                "items": [
                    {
                        "date": "the_11th",
                        "time": "9am",
                        "event": "tennis_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "father"
                    },
                    {
                        "date": "the_18th",
                        "time": "2pm",
                        "event": "football_activity",
                        "agenda": "-",
                        "room": "-",
                        "party": "martha"
                    },
                    .......
                ]
            },
            "qi": "0",
            "hi": "0",
            "kbi": "0"
        },
        "HIPosition": []
    }

KBRetriever_DC

Dataset QI HI KBI SUM
calendar_train.json 174 56 177 595
calendar_dev.json 28 9 24 74
calendar_test.json 23 8 21 74
navigate_train.json 453 386 591 1110
navigate_dev.json 55 41 69 139
navigate_test.json 48 44 71 138
weather_new_train.json 631 132 551 848
weather_new_dev.json 81 14 66 106
weather_new_test.json 72 12 69 106

Model

Here is the model structure of non pre-trained model (a) and pre-trained model (b and c).

Preparation

we provide some pre-trained baselines on our proposed CI-TOD dataset, the packages we used are listed follow:

-- scikit-learn==0.23.2
-- numpy=1.19.1
-- pytorch=1.1.0
-- fitlog==0.9.13
-- tqdm=4.49.0
-- sklearn==0.0
-- transformers==3.2.0

We highly suggest you using Anaconda to manage your python environment. If so, you can run the following command directly on the terminal to create the environment:

conda env create -f py3.6pytorch1.1_.yaml

How to run it

The script train.py acts as a main function to the project, you can run the experiments by the following commands:

python -u train.py --cfg KBRetriver_DC/KBRetriver_DC_BERT.cfg

The parameters we use are configured in the configure. If you need to adjust them, you can modify them in the relevant files or append parameters to the command.

Finally, you can check the results in logs folder.Also, you can run fitlog command to visualize the results:

fitlog log logs/

Baseline Experiment Result

All experiments were performed in TITAN_XP except for BART, which was performed on Tesla V100 PCIE 32 GB. These may not be the best results. Therefore, the parameters can be adjusted to obtain better results.

KBRetriever_DC

Baseline category Baseline method QI F1 HI F1 KBI F1 Overall Acc
Non Pre-trained Model ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
Pre-trained Model BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Human Performance 0.962 0.805 0.920 0.932

Leaderboard

If you submit papers with these datasets, please consider sending a pull request to merge your results onto the leaderboard. By submitting, you acknowledge that your results are obtained purely by training on the training datasets and tuned on the dev datasets (e.g. you only evaluted on the test set once).

KBRetriever_DC

Baseline method QI F1 HI F1 KBI F1 Overall Acc
ESIM (Chen et al., 2017) 0.512 0.164 0.543 0.432
Infersent (Romanov and Shivade, 2018) 0.557 0.031 0.336 0.356
RE2 (Yang et al., 2019) 0.655 0.244 0.739 0.481
BERT (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART (Lewis et al., 2020) 0.744 0.510 0.761 0.513
Human Performance 0.962 0.805 0.920 0.932

Acknowledgement

Thanks for patient annotation from all taggers Lehan Wang, Ran Duan, Fuxuan Wei, Yudi Zhang, Weiyun Wang!

Thanks for supports and guidance from our adviser Wanxiang Che!

Contact us

  • Just feel free to open issues or send us email(me, Tianbao) if you have any problems or find some mistakes in this dataset.
Owner
Libo Qin
Ph.D. Candidate in Harbin Institute of Technology @HIT-SCIR. Homepage: http://ir.hit.edu.cn/~lbqin/
Libo Qin
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022