Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

Related tags

Deep Learningpmapper
Overview

pmapper

pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and adaptable algorithm for these problems. An implementation of the contemporary Richardson-Lucy algorithm is included for comparison.

The name of this repository is an homage to MTF-Mapper, a slanted edge MTF measurement program written by Frans van den Bergh.

The implementations of all algorithms in this repository are CPU/GPU agnostic and performant, able to perform 4K restoration at hundreds of iterations per second.

Usage

Basic PMAP, Multi-frame PMAP

import pmapper

img = ... # load an image somehow
psf = ... # acquire the PSF associated with the img
pmp = pmapper.PMAP(img, psf)  # "PMAP problem"
while pmp.iter < 100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

In simulation studies, the true object can be compared to fHat (for example, mean square error) to track convergence. If the psf is "larger" than the image, for example a 1024x1024 image and a 2048x2048 psf, the output will be super-resolved at the 2048x2048 resolution.

PMAP is able to combine multiple images of the same objec with different PSFs into one with the multi-frame variant. This can be used to combat dynamical atmospheric seeing conditions, line of sight jitter, or even perform incoherent aperture synthesis; rendering images from sparse aperture systems that mimic or exceed a system with a fully filled aperture.

import pmapper

# load a sequence of images; could be any iterable,
# or e.g. a kxmxn ndarray, with k = num frames
# psfs must have the same "size" (k) and correspond
# to the images in the same indices
imgs = ...
psfs = ...
pmp = pmapper.MFPMAP(imgs, psfs)  # "PMAP problem"
while pmp.iter < len(imgs)*100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

Multi-frame PMAP cycles through the images and PSFs, so the total number of iterations "should" be an integer multiple of the number of source images. In this way, each image is "visited" an equal number of times.

GPU computing

As mentioned previously, pmapper can be used trivially on a GPU. To do so, simply execute the following modification:

import pmapper
from pmapper import backend

import cupy as cp
from cupyx.scipy import (
    ndimage as cpndimage,
    fft as cpfft
)

backend.np._srcmodule = cp
backend.fft.fft = cpfft
backend.ndimage._srcmodule = cpndimage

# if your data is not on the GPU already
img = cp.array(img)
psf = cp.array(psf)

# ... do PMAP, it will run on a GPU without changing anything about your code

fHatCPU = fHat.get()

cupy is not the only way to do so; anything that quacks like numpy, scipy fft, and scipy ndimage can be used to substitute the backend. This can be done dynamically and at runtime. You likely will want to cast your imagery from fp64 to fp32 for performance scaling on the GPU.

Owner
NASA Jet Propulsion Laboratory
A world leader in the robotic exploration of space
NASA Jet Propulsion Laboratory
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022