Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

Related tags

Deep Learningpmapper
Overview

pmapper

pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and adaptable algorithm for these problems. An implementation of the contemporary Richardson-Lucy algorithm is included for comparison.

The name of this repository is an homage to MTF-Mapper, a slanted edge MTF measurement program written by Frans van den Bergh.

The implementations of all algorithms in this repository are CPU/GPU agnostic and performant, able to perform 4K restoration at hundreds of iterations per second.

Usage

Basic PMAP, Multi-frame PMAP

import pmapper

img = ... # load an image somehow
psf = ... # acquire the PSF associated with the img
pmp = pmapper.PMAP(img, psf)  # "PMAP problem"
while pmp.iter < 100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

In simulation studies, the true object can be compared to fHat (for example, mean square error) to track convergence. If the psf is "larger" than the image, for example a 1024x1024 image and a 2048x2048 psf, the output will be super-resolved at the 2048x2048 resolution.

PMAP is able to combine multiple images of the same objec with different PSFs into one with the multi-frame variant. This can be used to combat dynamical atmospheric seeing conditions, line of sight jitter, or even perform incoherent aperture synthesis; rendering images from sparse aperture systems that mimic or exceed a system with a fully filled aperture.

import pmapper

# load a sequence of images; could be any iterable,
# or e.g. a kxmxn ndarray, with k = num frames
# psfs must have the same "size" (k) and correspond
# to the images in the same indices
imgs = ...
psfs = ...
pmp = pmapper.MFPMAP(imgs, psfs)  # "PMAP problem"
while pmp.iter < len(imgs)*100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

Multi-frame PMAP cycles through the images and PSFs, so the total number of iterations "should" be an integer multiple of the number of source images. In this way, each image is "visited" an equal number of times.

GPU computing

As mentioned previously, pmapper can be used trivially on a GPU. To do so, simply execute the following modification:

import pmapper
from pmapper import backend

import cupy as cp
from cupyx.scipy import (
    ndimage as cpndimage,
    fft as cpfft
)

backend.np._srcmodule = cp
backend.fft.fft = cpfft
backend.ndimage._srcmodule = cpndimage

# if your data is not on the GPU already
img = cp.array(img)
psf = cp.array(psf)

# ... do PMAP, it will run on a GPU without changing anything about your code

fHatCPU = fHat.get()

cupy is not the only way to do so; anything that quacks like numpy, scipy fft, and scipy ndimage can be used to substitute the backend. This can be done dynamically and at runtime. You likely will want to cast your imagery from fp64 to fp32 for performance scaling on the GPU.

Owner
NASA Jet Propulsion Laboratory
A world leader in the robotic exploration of space
NASA Jet Propulsion Laboratory
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Jihye Back 520 Jan 04, 2023
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022