Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

Related tags

Deep Learningpmapper
Overview

pmapper

pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and adaptable algorithm for these problems. An implementation of the contemporary Richardson-Lucy algorithm is included for comparison.

The name of this repository is an homage to MTF-Mapper, a slanted edge MTF measurement program written by Frans van den Bergh.

The implementations of all algorithms in this repository are CPU/GPU agnostic and performant, able to perform 4K restoration at hundreds of iterations per second.

Usage

Basic PMAP, Multi-frame PMAP

import pmapper

img = ... # load an image somehow
psf = ... # acquire the PSF associated with the img
pmp = pmapper.PMAP(img, psf)  # "PMAP problem"
while pmp.iter < 100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

In simulation studies, the true object can be compared to fHat (for example, mean square error) to track convergence. If the psf is "larger" than the image, for example a 1024x1024 image and a 2048x2048 psf, the output will be super-resolved at the 2048x2048 resolution.

PMAP is able to combine multiple images of the same objec with different PSFs into one with the multi-frame variant. This can be used to combat dynamical atmospheric seeing conditions, line of sight jitter, or even perform incoherent aperture synthesis; rendering images from sparse aperture systems that mimic or exceed a system with a fully filled aperture.

import pmapper

# load a sequence of images; could be any iterable,
# or e.g. a kxmxn ndarray, with k = num frames
# psfs must have the same "size" (k) and correspond
# to the images in the same indices
imgs = ...
psfs = ...
pmp = pmapper.MFPMAP(imgs, psfs)  # "PMAP problem"
while pmp.iter < len(imgs)*100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

Multi-frame PMAP cycles through the images and PSFs, so the total number of iterations "should" be an integer multiple of the number of source images. In this way, each image is "visited" an equal number of times.

GPU computing

As mentioned previously, pmapper can be used trivially on a GPU. To do so, simply execute the following modification:

import pmapper
from pmapper import backend

import cupy as cp
from cupyx.scipy import (
    ndimage as cpndimage,
    fft as cpfft
)

backend.np._srcmodule = cp
backend.fft.fft = cpfft
backend.ndimage._srcmodule = cpndimage

# if your data is not on the GPU already
img = cp.array(img)
psf = cp.array(psf)

# ... do PMAP, it will run on a GPU without changing anything about your code

fHatCPU = fHat.get()

cupy is not the only way to do so; anything that quacks like numpy, scipy fft, and scipy ndimage can be used to substitute the backend. This can be done dynamically and at runtime. You likely will want to cast your imagery from fp64 to fp32 for performance scaling on the GPU.

Owner
NASA Jet Propulsion Laboratory
A world leader in the robotic exploration of space
NASA Jet Propulsion Laboratory
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022