This repository contains the files for running the Patchify GUI.

Overview

Repository Name >> Train-Test-Validation-Dataset-Generation

App Name >> Patchify

Description >> This app is designed for crop images and creating small patches of a large image e.g. Satellite/Aerial Images, which will then be used for training and testing Deep Learning models specifically semantic segmentation models.

Functionalities: Patchify is capable of:

  • Crop the large image into small patches based on the user-defined patch window-size and patch stride/step independently in two x and y directions.
  • Augmenting the cropped dataset to expand the size of the training dataset and make the model to improve the model performance with better generalizing for unseen samples.
  • Dividing the created dataset into different Train, Test, and Validation dataset with user defined percentages.

A picture of Patchify App is shown below:

Parameters:

  • Input Image: is the input large image need to be cropped into small patches. It can be whether raster or its label image. (The produced results will in the same format as the input image)

  • Export Folder: is the directory for saving the generated cropped patches.

  • Window Size: is the size of the cropping window which is equal to the size of the generated small patches. (X is the patch/cropped images' length in X direction and Y is their length in Y direction.)

  • Stride: is the step size of the moving window for generating the patches. It can move in different step sizes in X and Y directions.

  • Output name: is the constant part of the generated patches' name.

  • Training Percentage: is the percentage of Total generated patches goes into Training Dataset.

  • Testing Percentage: is the percentage of Total generated patches goes into Testing Dataset.

  • Validation Percentage: is the percentage of Total generated patches goes into Validation Dataset.

  • Original Image: is the original version of the cropped patch at the location of moving/sliding window.

  • Rotate 90 Degrees: is the version of original image rotated 90 degrees clockwise.

  • Rotate 180 Degrees: is the version of original image rotated 180 degrees clockwise.

  • Rotate 270 Degrees: is the version of original image rotated 270 degrees clockwise.

  • Flip Vertically: is the version of original image flipped vertically.

  • Flip Horizontally: is the version of original image flipped horizontally.

  • Flip Verticall and Horizontally: is the version of original image flipped both vertically and horizontally .

  • Start Patching: starts the patching operations based on the selected parameters.

  • Cancel: is the button for stopping the patching operations and/or closing the Patchify App.

  • Augmentation section has two buttoms. All button selects all the augmentation methods. In case a different format should be checked manually, the Custom Selection can be selected.

Important Notes:

  • if none of the Train, Testing, Validation percentages is filled, Then the Results will only produce Total cropped patches and the dataset spliting section won't run.
  • Make sure you have selected an image, the destination folder for storing and the generated patch name before pressing "Start Patchify" button.

Implementation:

patchify.py is the only file you need to run. But before make sure you have installed all the required python libraries including opencv, PyQt5. Be sure to use the latest version of pip along with python 3.7

Owner
Salar Ghaffarian
Remote Sensing and GIScientist - MSc in Geomatics Engineering - I am specialist in using Deep learning, Computer vision, and machine learning methods.
Salar Ghaffarian
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023