Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Related tags

Deep LearningCARE
Overview

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

This repository is the official implementation of CARE. Graph

Updates

  • (09/10/2021) Our paper is accepted by NeurIPS 2021.

Requirements

To install requirements:

conda create -n care python=3.6
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
pip install tensorboard
pip install ipdb
pip install einops
pip install loguru
pip install pyarrow==3.0.0
pip install tqdm

📋 Pytorch>=1.6 is needed for runing the code.

Data Preparation

Prepare the ImageNet data in {data_path}/train.lmdb and {data_path}/val.lmdb

Relpace the original data path in care/data/dataset_lmdb (Line7 and Line40) with your new {data_path}.

📋 Note that we use the lmdb file to speed-up the data-processing procedure.

Training

Before training the ResNet-50 (100 epoch) in the paper, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then run the training code via:

bash run_train.sh      #(The training script is used for trianing CARE with 8 gpus)
bash single_gpu_train.sh    #(We also provide the script for trainig CARE with only one gpu)

📋 The training script is used to do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. using --log_path to specify the main folder for saving experimental results.
  4. using --experiment-name to specify the folder for saving training outputs.

The code base also supports for training other backbones (e.g., ResNet101 and ResNet152) with different training schedules (e.g., 200, 400 and 800 epochs).

Evaluation

Before start the evaluation, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then, to evaluate the pre-trained model (e.g., ResNet50-100epoch) on ImageNet, run:

bash run_val.sh      #(The training script is used for evaluating CARE with 8 gpus)
bash debug_val.sh    #(We also provide the script for evaluating CARE with only one gpu)

📋 The training script is used to do the supervised linear evaluation of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. Modifying --log_path according to your own config.
  4. Modifying --experiment-name according to your own config.

Pre-trained Models

We here provide some pre-trained models in the [shared folder]:

Here are some examples.

  • [ResNet-50 100epoch] trained on ImageNet using ResNet-50 with 100 epochs.
  • [ResNet-50 200epoch] trained on ImageNet using ResNet-50 with 200 epochs.
  • [ResNet-50 400epoch] trained on ImageNet using ResNet-50 with 400 epochs.

More models are provided in the following model zoo part.

📋 We will provide more pretrained models in the future.

Model Zoo

Our model achieves the following performance on :

Self-supervised learning on image classifications.

Method Backbone epoch Top-1 Top-5 pretrained model linear evaluation model
CARE ResNet50 100 72.02% 90.02% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 200 73.78% 91.50% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 400 74.68% 91.97% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 800 75.56% 92.32% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 100 73.51% 91.66% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 200 75.00% 92.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 400 76.48% 92.99% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 800 77.04% 93.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 100 73.54% 91.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 200 75.89% 92.70% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 400 76.85% 93.31% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 800 77.23% 93.52% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 100 74.59% 92.09% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 200 76.58% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 400 77.40% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 800 78.11% 93.81% [pretrained] (wip) [linear_model] (wip)

Transfer learning to object detection and semantic segmentation.

COCO det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 39.4 59.2 42.6 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 39.6 59.4 42.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 39.5 60.2 43.1 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 39.8 60.5 43.5 [pretrained] (wip) [model] (wip)

COCO instance seg

Method Backbone epoch AP_mk AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 34.6 56.1 36.8 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 34.7 56.1 36.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 35.9 57.2 38.5 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 36.2 57.4 38.8 [pretrained] (wip) [model] (wip)

VOC07+12 det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 57.7 83.0 64.5 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 57.9 83.0 64.7 [pretrained] (wip) [model] (wip)

📋 More results are provided in the paper.

Contributing

📋 WIP

Owner
ChongjianGE
🎯 PhD in Computer Vision ☑️ MSc & BEng in Electrical Engineering
ChongjianGE
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022