Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Related tags

Deep LearningCARE
Overview

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

This repository is the official implementation of CARE. Graph

Updates

  • (09/10/2021) Our paper is accepted by NeurIPS 2021.

Requirements

To install requirements:

conda create -n care python=3.6
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
pip install tensorboard
pip install ipdb
pip install einops
pip install loguru
pip install pyarrow==3.0.0
pip install tqdm

πŸ“‹ Pytorch>=1.6 is needed for runing the code.

Data Preparation

Prepare the ImageNet data in {data_path}/train.lmdb and {data_path}/val.lmdb

Relpace the original data path in care/data/dataset_lmdb (Line7 and Line40) with your new {data_path}.

πŸ“‹ Note that we use the lmdb file to speed-up the data-processing procedure.

Training

Before training the ResNet-50 (100 epoch) in the paper, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then run the training code via:

bash run_train.sh      #(The training script is used for trianing CARE with 8 gpus)
bash single_gpu_train.sh    #(We also provide the script for trainig CARE with only one gpu)

πŸ“‹ The training script is used to do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. using --log_path to specify the main folder for saving experimental results.
  4. using --experiment-name to specify the folder for saving training outputs.

The code base also supports for training other backbones (e.g., ResNet101 and ResNet152) with different training schedules (e.g., 200, 400 and 800 epochs).

Evaluation

Before start the evaluation, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then, to evaluate the pre-trained model (e.g., ResNet50-100epoch) on ImageNet, run:

bash run_val.sh      #(The training script is used for evaluating CARE with 8 gpus)
bash debug_val.sh    #(We also provide the script for evaluating CARE with only one gpu)

πŸ“‹ The training script is used to do the supervised linear evaluation of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. Modifying --log_path according to your own config.
  4. Modifying --experiment-name according to your own config.

Pre-trained Models

We here provide some pre-trained models in the [shared folder]:

Here are some examples.

  • [ResNet-50 100epoch] trained on ImageNet using ResNet-50 with 100 epochs.
  • [ResNet-50 200epoch] trained on ImageNet using ResNet-50 with 200 epochs.
  • [ResNet-50 400epoch] trained on ImageNet using ResNet-50 with 400 epochs.

More models are provided in the following model zoo part.

πŸ“‹ We will provide more pretrained models in the future.

Model Zoo

Our model achieves the following performance on :

Self-supervised learning on image classifications.

Method Backbone epoch Top-1 Top-5 pretrained model linear evaluation model
CARE ResNet50 100 72.02% 90.02% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 200 73.78% 91.50% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 400 74.68% 91.97% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 800 75.56% 92.32% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 100 73.51% 91.66% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 200 75.00% 92.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 400 76.48% 92.99% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 800 77.04% 93.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 100 73.54% 91.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 200 75.89% 92.70% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 400 76.85% 93.31% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 800 77.23% 93.52% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 100 74.59% 92.09% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 200 76.58% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 400 77.40% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 800 78.11% 93.81% [pretrained] (wip) [linear_model] (wip)

Transfer learning to object detection and semantic segmentation.

COCO det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 39.4 59.2 42.6 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 39.6 59.4 42.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 39.5 60.2 43.1 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 39.8 60.5 43.5 [pretrained] (wip) [model] (wip)

COCO instance seg

Method Backbone epoch AP_mk AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 34.6 56.1 36.8 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 34.7 56.1 36.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 35.9 57.2 38.5 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 36.2 57.4 38.8 [pretrained] (wip) [model] (wip)

VOC07+12 det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 57.7 83.0 64.5 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 57.9 83.0 64.7 [pretrained] (wip) [model] (wip)

πŸ“‹ More results are provided in the paper.

Contributing

πŸ“‹ WIP

Owner
ChongjianGE
🎯 PhD in Computer Vision β˜‘οΈ MSc & BEng in Electrical Engineering
ChongjianGE
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-NΓΊΓ±ez This repositor

Leonardo Zepeda-NΓΊΓ±ez 2 Feb 11, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022