KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

Overview

KSAI Lite

English | 简体中文

Documentation Status Release License

KSAI Lite是一个轻量级、灵活性强、高性能且易于扩展的深度学习推理框架,底层基于tensorflow lite,定位支持包括移动端、嵌入式以及服务器端在内的多硬件平台。

当前KSAI Lite已经应用在金山office内部业务中,并逐步支持金山企业的生产任务和众多外部用户。

快速入门

使用KSAI Lite,只需几个简单的步骤,就可以把模型部署到多种终端设备中,运行高性能的推理任务,使用流程如下所示:

一. 准备模型

KSAI Lite框架直接支持模型结构为tflite模型。 如果您手中的模型是由诸如Caffe、MXNet、PyTorch等框架产出的,那么您可以使用工具将模型转换为tflite格式。

二. 模型优化

KSAI Lite框架基于底层tensorflow lite的优化方法,拥有优秀的加速、优化策略及实现,包含量化、子图融合、Kernel优选等优化手段。优化后的模型更轻量级,耗费资源更少,并且执行速度也更快。

三. 下载或编译

KSAI Lite提供了多平台的官方Release预测库下载,我们优先推荐您直接下载 KSAI Lite预编译库,包括了Linux-X64, Linux-ARM, Linux-MIPS64以及Windows-X64索引库Windows-X64动态链接库。 您也可以根据目标平台选择对应的源码编译方法。KSAI Lite 提供了源码编译脚本,位于 tools/目录下,只需要按照docs/目录下的准备环境说明文档environment setup.md搭建好环境然后切到tools/目录调用编译脚本两个步骤即可一键编译得到目标平台的KSAI Lite预测库。

四. 预测示例

KSAI Lite提供了C++ API,并且提供了相应API的完整使用示例: 目录为tensorflow/lite/examples/reg_test/reg_test.cc 您可以参考示例快速了解使用方法,并集成到您自己的项目中去,也可以参考KSAI-Toolkits该项目。

主要特性

  • 多硬件支持
    • KSAI Lite架构已经验证和完整支持从 Mobile 到 Server 多种硬件平台,包括 intel X86、ARM、华为 Kunpeng 920、龙芯Loongson-3A R3、兆芯C4600、Phytium FT1500a等,且正在不断增加更多新硬件支持。
  • 轻量级部署
    • KSAI Lite在设计上对图优化模块和执行引擎实现了良好的解耦拆分,移动端可以直接部署执行阶段,无任何第三方依赖。
  • 高性能
    • 极致的 ARM及X86 CPU 性能优化:针对不同微架构特点实现kernel的定制,最大发挥计算性能,在主流模型上展现出领先的速度优势。
  • 多模型多算子
    • KSAI Lite和tensorflow训练框架的OP对齐,提供广泛的模型支持能力。
    • 目前已对视觉类模型做到了较为充分的支持,覆盖分类、检测和识别,包含了特色的OCR模型的支持,并在不断丰富中。
  • 强大的图分析和优化能力
    • 不同于常规的移动端预测引擎基于 Python 脚本工具转化模型, Lite 架构上有完整基于 C++ 开发的 IR 及相应 Pass 集合,以支持操作融合,计算剪枝,存储优化,量化计算等多类计算图优化。

持续集成

System X86 Linux ARM Linux MIPS64 Linux windows
CPU(32bit) Build Status - - Build Status
CPU(64bit) Build Status - - Build Status
高通骁龙845 - Build Status - -
华为kunpeng920 - Build Status - -
龙芯Loongson-3A - - Build Status -
兆芯C4600 - Build Status - -
Phytium FT1500a - Build Status - -

交流与反馈

版权和许可证

KSAI-Lite由Apache-2.0 license提供

Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023