KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

Overview

KSAI Lite

English | 简体中文

Documentation Status Release License

KSAI Lite是一个轻量级、灵活性强、高性能且易于扩展的深度学习推理框架,底层基于tensorflow lite,定位支持包括移动端、嵌入式以及服务器端在内的多硬件平台。

当前KSAI Lite已经应用在金山office内部业务中,并逐步支持金山企业的生产任务和众多外部用户。

快速入门

使用KSAI Lite,只需几个简单的步骤,就可以把模型部署到多种终端设备中,运行高性能的推理任务,使用流程如下所示:

一. 准备模型

KSAI Lite框架直接支持模型结构为tflite模型。 如果您手中的模型是由诸如Caffe、MXNet、PyTorch等框架产出的,那么您可以使用工具将模型转换为tflite格式。

二. 模型优化

KSAI Lite框架基于底层tensorflow lite的优化方法,拥有优秀的加速、优化策略及实现,包含量化、子图融合、Kernel优选等优化手段。优化后的模型更轻量级,耗费资源更少,并且执行速度也更快。

三. 下载或编译

KSAI Lite提供了多平台的官方Release预测库下载,我们优先推荐您直接下载 KSAI Lite预编译库,包括了Linux-X64, Linux-ARM, Linux-MIPS64以及Windows-X64索引库Windows-X64动态链接库。 您也可以根据目标平台选择对应的源码编译方法。KSAI Lite 提供了源码编译脚本,位于 tools/目录下,只需要按照docs/目录下的准备环境说明文档environment setup.md搭建好环境然后切到tools/目录调用编译脚本两个步骤即可一键编译得到目标平台的KSAI Lite预测库。

四. 预测示例

KSAI Lite提供了C++ API,并且提供了相应API的完整使用示例: 目录为tensorflow/lite/examples/reg_test/reg_test.cc 您可以参考示例快速了解使用方法,并集成到您自己的项目中去,也可以参考KSAI-Toolkits该项目。

主要特性

  • 多硬件支持
    • KSAI Lite架构已经验证和完整支持从 Mobile 到 Server 多种硬件平台,包括 intel X86、ARM、华为 Kunpeng 920、龙芯Loongson-3A R3、兆芯C4600、Phytium FT1500a等,且正在不断增加更多新硬件支持。
  • 轻量级部署
    • KSAI Lite在设计上对图优化模块和执行引擎实现了良好的解耦拆分,移动端可以直接部署执行阶段,无任何第三方依赖。
  • 高性能
    • 极致的 ARM及X86 CPU 性能优化:针对不同微架构特点实现kernel的定制,最大发挥计算性能,在主流模型上展现出领先的速度优势。
  • 多模型多算子
    • KSAI Lite和tensorflow训练框架的OP对齐,提供广泛的模型支持能力。
    • 目前已对视觉类模型做到了较为充分的支持,覆盖分类、检测和识别,包含了特色的OCR模型的支持,并在不断丰富中。
  • 强大的图分析和优化能力
    • 不同于常规的移动端预测引擎基于 Python 脚本工具转化模型, Lite 架构上有完整基于 C++ 开发的 IR 及相应 Pass 集合,以支持操作融合,计算剪枝,存储优化,量化计算等多类计算图优化。

持续集成

System X86 Linux ARM Linux MIPS64 Linux windows
CPU(32bit) Build Status - - Build Status
CPU(64bit) Build Status - - Build Status
高通骁龙845 - Build Status - -
华为kunpeng920 - Build Status - -
龙芯Loongson-3A - - Build Status -
兆芯C4600 - Build Status - -
Phytium FT1500a - Build Status - -

交流与反馈

版权和许可证

KSAI-Lite由Apache-2.0 license提供

POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022