Pytorch0.4.1 codes for InsightFace

Overview

InsightFace_Pytorch

Pytorch0.4.1 codes for InsightFace


1. Intro

  • This repo is a reimplementation of Arcface(paper), or Insightface(github)
  • For models, including the pytorch implementation of the backbone modules of Arcface and MobileFacenet
  • Codes for transform MXNET data records in Insightface(github) to Image Datafolders are provided
  • Pretrained models are posted, include the MobileFacenet and IR-SE50 in the original paper

2. Pretrained Models & Performance

IR-SE50 @ BaiduNetdisk, IR-SE50 @ Onedrive

LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9952 0.9962 0.9504 0.9622 0.9557 0.9107 0.9386

Mobilefacenet @ BaiduNetDisk, Mobilefacenet @ OneDrive

LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9918 0.9891 0.8986 0.9347 0.9402 0.866 0.9100

3. How to use

  • clone

    git clone https://github.com/TropComplique/mtcnn-pytorch.git
    

3.1 Data Preparation

3.1.1 Prepare Facebank (For testing over camera or video)

Provide the face images your want to detect in the data/face_bank folder, and guarantee it have a structure like following:

data/facebank/
        ---> id1/
            ---> id1_1.jpg
        ---> id2/
            ---> id2_1.jpg
        ---> id3/
            ---> id3_1.jpg
           ---> id3_2.jpg

3.1.2 download the pretrained model to work_space/model

If more than 1 image appears in one folder, an average embedding will be calculated

3.2.3 Prepare Dataset ( For training)

download the refined dataset: (emore recommended)

Note: If you use the refined MS1M dataset and the cropped VGG2 dataset, please cite the original papers.

  • after unzip the files to 'data' path, run :

    python prepare_data.py
    

    after the execution, you should find following structure:

faces_emore/
            ---> agedb_30
            ---> calfw
            ---> cfp_ff
            --->  cfp_fp
            ---> cfp_fp
            ---> cplfw
            --->imgs
            ---> lfw
            ---> vgg2_fp

3.2 detect over camera:

- facebank/
         name1/
             photo1.jpg
             photo2.jpg
             ...
         name2/
             photo1.jpg
             photo2.jpg
             ...
         .....
    if more than 1 image appears in the directory, average embedding will be calculated
  • 4 to start

    python face_verify.py 
    

3.3 detect over video:

​```
python infer_on_video.py -f [video file name] -s [save file name]
​```

the video file should be inside the data/face_bank folder

3.4 Training:

​```
python train.py -b [batch_size] -lr [learning rate] -e [epochs]

# python train.py -net mobilefacenet -b 200 -w 4
​```

4. References

PS

  • PRs are welcome, in case that I don't have the resource to train some large models like the 100 and 151 layers model
  • Email : [email protected]
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022