Repository for Multimodal AutoML Benchmark

Overview

Benchmarking Multimodal AutoML for Tabular Data with Text Fields

Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal AutoML for Tabular Data with Text Fields" (Link, Full Paper with Appendix). An earlier version of the paper, called "Multimodal AutoML on Structured Tables with Text Fields" (Link) has been accepted by ICML 2021 AutoML workshop as Oral. As we have since updated the benchmark with more datasets, the version used in the AutoML workshop paper has been archived at the icml_workshop branch.

This benchmark contains a diverse collection of tabular datasets. Each dataset contains numeric/categorical as well as text columns. The goal is to evaluate the performance of (automated) ML systems for supervised learning (classification and regression) with such multimodal data. The folder multimodal_text_benchmark/scripts/benchmark/ provides Python scripts to run different variants of the AutoGluon and H2O AutoML tools on the benchmark.

Datasets used in the Benchmark

Here's a brief summary of the datasets in our benchmark. Each dataset is described in greater detail in the multimodal_text_benchmark/ folder.

ID key #Train #Test Task Metric Prediction Target
prod product_sentiment_machine_hack 5,091 1,273 multiclass accuracy sentiment related to product
salary data_scientist_salary 15,84 3961 multiclass accuracy salary range in data scientist job listings
airbnb melbourne_airbnb 18,316 4,579 multiclass accuracy price of Airbnb listing
channel news_channel 20,284 5,071 multiclass accuracy category of news article
wine wine_reviews 84,123 21,031 multiclass accuracy variety of wine
imdb imdb_genre_prediction 800 200 binary roc_auc whether film is a drama
fake fake_job_postings2 12,725 3,182 binary roc_auc whether job postings are fake
kick kick_starter_funding 86,052 21,626 binary roc_auc will Kickstarter get funding
jigsaw jigsaw_unintended_bias100K 100,000 25,000 binary roc_auc whether comments are toxic
qaa google_qa_answer_type_reason_explanation 4,863 1,216 regression r2 type of answer
qaq google_qa_question_type_reason_explanation 4,863 1,216 regression r2 type of question
book bookprice_prediction 4,989 1,248 regression r2 price of books
jc jc_penney_products 10,860 2,715 regression r2 price of JC Penney products
cloth women_clothing_review 18,788 4,698 regression r2 review score
ae ae_price_prediction 22,662 5,666 regression r2 American-Eagle item prices
pop news_popularity2 24,007 6,002 regression r2 news article popularity online
house california_house_price 24,007 6,002 regression r2 sale price of houses in California
mercari mercari_price_suggestion100K 100,000 25,000 regression r2 price of Mercari products

License

The versions of datasets in this benchmark are released under the CC BY-NC-SA license. Note that the datasets in this benchmark are modified versions of previously publicly-available original copies and we do not own any of the datasets in the benchmark. Any data from this benchmark which has previously been published elsewhere falls under the original license from which the data originated. Please refer to the licenses of each original source linked in the multimodal_text_benchmark/README.md.

Install the Benchmark Suite

cd multimodal_text_benchmark
# Install the benchmarking suite
python3 -m pip install -U -e .

You can do a quick test of the installation by going to the test folder

cd multimodal_text_benchmark/tests
python3 -m pytest test_datasets.py

To work with one of the datasets, use the following code:

from auto_mm_bench.datasets import dataset_registry

print(dataset_registry.list_keys())  # list of all dataset names
dataset_name = 'product_sentiment_machine_hack'

train_dataset = dataset_registry.create(dataset_name, 'train')
test_dataset = dataset_registry.create(dataset_name, 'test')
print(train_dataset.data)
print(test_dataset.data)

To access all datasets that comprise the benchmark:

from auto_mm_bench.datasets import create_dataset, TEXT_BENCHMARK_ALIAS_MAPPING

for dataset_name in list(TEXT_BENCHMARK_ALIAS_MAPPING.values()):
    print(dataset_name)
    dataset = create_dataset(dataset_name)

Run Experiments

Go to multimodal_text_benchmark/scripts/benchmark to see how to run some baseline ML methods over the benchmark.

References

BibTeX entry of the ICML Workshop Version:

@article{agmultimodaltext,
  title={Multimodal AutoML on Structured Tables with Text Fields},
  author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alexander},
  journal={8th ICML Workshop on Automated Machine Learning (AutoML)},
  year={2021}
}
Owner
Xingjian Shi
Xingjian Shi
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022