Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Overview

Benchmarking nearest neighbors

Build Status

Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far there has not been a lot of empirical attempts at comparing approaches in an objective way.

This project contains some tools to benchmark various implementations of approximate nearest neighbor (ANN) search for different metrics. We have pregenerated datasets (in HDF5) formats and we also have Docker containers for each algorithm. There's a test suite that makes sure every algorithm works.

Evaluated

Data sets

We have a number of precomputed data sets for this. All data sets are pre-split into train/test and come with ground truth data in the form of the top 100 neighbors. We store them in a HDF5 format:

Dataset Dimensions Train size Test size Neighbors Distance Download
DEEP1B 96 9,990,000 10,000 100 Angular HDF5 (3.6GB)
Fashion-MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
GIST 960 1,000,000 1,000 100 Euclidean HDF5 (3.6GB)
GloVe 25 1,183,514 10,000 100 Angular HDF5 (121MB)
GloVe 50 1,183,514 10,000 100 Angular HDF5 (235MB)
GloVe 100 1,183,514 10,000 100 Angular HDF5 (463MB)
GloVe 200 1,183,514 10,000 100 Angular HDF5 (918MB)
Kosarak 27983 74,962 500 100 Jaccard HDF5 (2.0GB)
MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
NYTimes 256 290,000 10,000 100 Angular HDF5 (301MB)
SIFT 128 1,000,000 10,000 100 Euclidean HDF5 (501MB)
Last.fm 65 292,385 50,000 100 Angular HDF5 (135MB)

Results

Interactive plots can be found at http://ann-benchmarks.com. These are all as of December 2021, running all benchmarks on a r5.4xlarge machine on AWS with --parallelism 7:

glove-100-angular

glove-100-angular

sift-128-euclidean

glove-100-angular

fashion-mnist-784-euclidean

fashion-mnist-784-euclidean

lastfm-64-dot

lastfm-64-dot

nytimes-256-angular

nytimes-256-angular

glove-25-angular

glove-25-angular

Install

The only prerequisite is Python (tested with 3.6) and Docker.

  1. Clone the repo.
  2. Run pip install -r requirements.txt.
  3. Run python install.py to build all the libraries inside Docker containers (this can take a while, like 10-30 minutes).

Running

  1. Run python run.py (this can take an extremely long time, potentially days)
  2. Run python plot.py or python create_website.py to plot results.

You can customize the algorithms and datasets if you want to:

  • Check that algos.yaml contains the parameter settings that you want to test
  • To run experiments on SIFT, invoke python run.py --dataset glove-100-angular. See python run.py --help for more information on possible settings. Note that experiments can take a long time.
  • To process the results, either use python plot.py --dataset glove-100-angular or python create_website.py. An example call: python create_website.py --plottype recall/time --latex --scatter --outputdir website/.

Including your algorithm

  1. Add your algorithm into ann_benchmarks/algorithms by providing a small Python wrapper.
  2. Add a Dockerfile in install/ for it
  3. Add it to algos.yaml
  4. Add it to .github/workflows/benchmarks.yml

Principles

  • Everyone is welcome to submit pull requests with tweaks and changes to how each library is being used.
  • In particular: if you are the author of any of these libraries, and you think the benchmark can be improved, consider making the improvement and submitting a pull request.
  • This is meant to be an ongoing project and represent the current state.
  • Make everything easy to replicate, including installing and preparing the datasets.
  • Try many different values of parameters for each library and ignore the points that are not on the precision-performance frontier.
  • High-dimensional datasets with approximately 100-1000 dimensions. This is challenging but also realistic. Not more than 1000 dimensions because those problems should probably be solved by doing dimensionality reduction separately.
  • Single queries are used by default. ANN-Benchmarks enforces that only one CPU is saturated during experimentation, i.e., no multi-threading. A batch mode is available that provides all queries to the implementations at once. Add the flag --batch to run.py and plot.py to enable batch mode.
  • Avoid extremely costly index building (more than several hours).
  • Focus on datasets that fit in RAM. For billion-scale benchmarks, see the related big-ann-benchmarks project.
  • We mainly support CPU-based ANN algorithms. GPU support exists for FAISS, but it has to be compiled with GPU support locally and experiments must be run using the flags --local --batch.
  • Do proper train/test set of index data and query points.
  • Note that we consider that set similarity datasets are sparse and thus we pass a sorted array of integers to algorithms to represent the set of each user.

Authors

Built by Erik Bernhardsson with significant contributions from Martin Aumüller and Alexander Faithfull.

Related Publication

The following publication details design principles behind the benchmarking framework:

Related Projects

Owner
Erik Bernhardsson
Working on some weird ideas for data infra. Ex-CTO at better.com, likes to open source stuff sometimes and write random blog posts.
Erik Bernhardsson
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021