Implementation of Common Image Evaluation Metrics by Sayed Nadim (sayednadim.github.io). The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

Overview

Image Quality Evaluation Metrics

Implementation of some common full reference image quality metrics. The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

The goal of this repo is to provide a common evaluation script for image evaluation tasks. It contains some commonly used image quality metrics for image evaluation (e.g., L1, L2, SSIM, PSNR, LPIPS, FID, IS).

Pull requests and corrections/suggestions will be cordially appreciated.

Inception Score is not correct. I will check and confirm. Other metrics are ok!

Please Note

  • Images are scaled to [0,1]. If you need to change the data range, please make sure to change the data range in SSIM and PSNR.
  • Number of generated images and ground truth images have to be exactly same.
  • I have resized the images to be (256,256). You can change the resolution based on your needs.
  • Please make sure that all the images (generated and ground_truth images) are in the corresponding folders.

Requirements

How to use

Edit config.yaml as per your need.

  • Run main.py

Usage

  • Options in config.yaml file
    • dataset_name - Name of the dataset (e.g. Places, DIV2K etc. Used for saving dataset name in csv file.). Default
      • Places
    • dataset_with_subfolders - Set to True if your dataset has sub-folders containing images. Default - False
    • multiple_evaluation - Whether you want sequential evaluation ro single evaluation. Please refer to the folder structure for this.
    • dataset_format - Whether you are providing flists or just path to the image folders. Default - image.
    • model_name - Name of the model. Used for saving metrics values in the CSV. Default - Own.
    • generated_image_path - Path to your generated images.
    • ground_truth_image_path - Path to your ground truth images.
    • batch_size - batch size you want to use. Default - 4.
    • image_shape - Shape of the image. Both generated image and ground truth images will be resized to this width. Default - [256, 256, 3].
    • threads - Threads to be used for multi-processing Default - 4.
    • random_crop - If you want random cropped image, instead of resized. Currently not implemented.
    • save_results - If you want to save the results in csv files. Saved to results folder. Default - True.
    • save_type - csv or npz. npz is not implemented yet.

Single or multiple evaluation

        # ================= Single structure ===================#

    |- root
    |   |- image_1
    |   |- image_2
    |   | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    For multiple_evaluation, I assumed the file system like this:

        # ================= structure 1 ===================#
    |- root
    |   |- file_10_20
    |        |- image_1
    |        |- image_2
    |        | - .....
    |    |- file_20_30
    |        |- image_1
    |        |- image_2
    |         | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    or nested structure like this....

        # ================= structure 2 ===================#

    |- root
    |   |- 01_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |   |- 02_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

To-do metrics

  • L1
  • L2
  • SSIM
  • PSNR
  • LPIPS
  • FID
  • IS

To-do tasks

  • implementation of the framework
  • primary check for errors
  • Sequential evaluation (i.e. folder1,folder2, folder3... vs ground_truth, useful for denoising, inpainting etc.)
  • unittest

Acknowledgement

Thanks to PhotoSynthesis Team for the wonderful implementation of the metrics. Please cite accordingly if you use PIQ for the evaluation.

Cheers!!

Owner
Sayed Nadim
A string is actually a collection of characters, much like myself.
Sayed Nadim
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022