Implementation of Common Image Evaluation Metrics by Sayed Nadim (sayednadim.github.io). The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

Overview

Image Quality Evaluation Metrics

Implementation of some common full reference image quality metrics. The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

The goal of this repo is to provide a common evaluation script for image evaluation tasks. It contains some commonly used image quality metrics for image evaluation (e.g., L1, L2, SSIM, PSNR, LPIPS, FID, IS).

Pull requests and corrections/suggestions will be cordially appreciated.

Inception Score is not correct. I will check and confirm. Other metrics are ok!

Please Note

  • Images are scaled to [0,1]. If you need to change the data range, please make sure to change the data range in SSIM and PSNR.
  • Number of generated images and ground truth images have to be exactly same.
  • I have resized the images to be (256,256). You can change the resolution based on your needs.
  • Please make sure that all the images (generated and ground_truth images) are in the corresponding folders.

Requirements

How to use

Edit config.yaml as per your need.

  • Run main.py

Usage

  • Options in config.yaml file
    • dataset_name - Name of the dataset (e.g. Places, DIV2K etc. Used for saving dataset name in csv file.). Default
      • Places
    • dataset_with_subfolders - Set to True if your dataset has sub-folders containing images. Default - False
    • multiple_evaluation - Whether you want sequential evaluation ro single evaluation. Please refer to the folder structure for this.
    • dataset_format - Whether you are providing flists or just path to the image folders. Default - image.
    • model_name - Name of the model. Used for saving metrics values in the CSV. Default - Own.
    • generated_image_path - Path to your generated images.
    • ground_truth_image_path - Path to your ground truth images.
    • batch_size - batch size you want to use. Default - 4.
    • image_shape - Shape of the image. Both generated image and ground truth images will be resized to this width. Default - [256, 256, 3].
    • threads - Threads to be used for multi-processing Default - 4.
    • random_crop - If you want random cropped image, instead of resized. Currently not implemented.
    • save_results - If you want to save the results in csv files. Saved to results folder. Default - True.
    • save_type - csv or npz. npz is not implemented yet.

Single or multiple evaluation

        # ================= Single structure ===================#

    |- root
    |   |- image_1
    |   |- image_2
    |   | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    For multiple_evaluation, I assumed the file system like this:

        # ================= structure 1 ===================#
    |- root
    |   |- file_10_20
    |        |- image_1
    |        |- image_2
    |        | - .....
    |    |- file_20_30
    |        |- image_1
    |        |- image_2
    |         | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    or nested structure like this....

        # ================= structure 2 ===================#

    |- root
    |   |- 01_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |   |- 02_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

To-do metrics

  • L1
  • L2
  • SSIM
  • PSNR
  • LPIPS
  • FID
  • IS

To-do tasks

  • implementation of the framework
  • primary check for errors
  • Sequential evaluation (i.e. folder1,folder2, folder3... vs ground_truth, useful for denoising, inpainting etc.)
  • unittest

Acknowledgement

Thanks to PhotoSynthesis Team for the wonderful implementation of the metrics. Please cite accordingly if you use PIQ for the evaluation.

Cheers!!

Owner
Sayed Nadim
A string is actually a collection of characters, much like myself.
Sayed Nadim
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022