Implementation of Common Image Evaluation Metrics by Sayed Nadim (sayednadim.github.io). The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

Overview

Image Quality Evaluation Metrics

Implementation of some common full reference image quality metrics. The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

The goal of this repo is to provide a common evaluation script for image evaluation tasks. It contains some commonly used image quality metrics for image evaluation (e.g., L1, L2, SSIM, PSNR, LPIPS, FID, IS).

Pull requests and corrections/suggestions will be cordially appreciated.

Inception Score is not correct. I will check and confirm. Other metrics are ok!

Please Note

  • Images are scaled to [0,1]. If you need to change the data range, please make sure to change the data range in SSIM and PSNR.
  • Number of generated images and ground truth images have to be exactly same.
  • I have resized the images to be (256,256). You can change the resolution based on your needs.
  • Please make sure that all the images (generated and ground_truth images) are in the corresponding folders.

Requirements

How to use

Edit config.yaml as per your need.

  • Run main.py

Usage

  • Options in config.yaml file
    • dataset_name - Name of the dataset (e.g. Places, DIV2K etc. Used for saving dataset name in csv file.). Default
      • Places
    • dataset_with_subfolders - Set to True if your dataset has sub-folders containing images. Default - False
    • multiple_evaluation - Whether you want sequential evaluation ro single evaluation. Please refer to the folder structure for this.
    • dataset_format - Whether you are providing flists or just path to the image folders. Default - image.
    • model_name - Name of the model. Used for saving metrics values in the CSV. Default - Own.
    • generated_image_path - Path to your generated images.
    • ground_truth_image_path - Path to your ground truth images.
    • batch_size - batch size you want to use. Default - 4.
    • image_shape - Shape of the image. Both generated image and ground truth images will be resized to this width. Default - [256, 256, 3].
    • threads - Threads to be used for multi-processing Default - 4.
    • random_crop - If you want random cropped image, instead of resized. Currently not implemented.
    • save_results - If you want to save the results in csv files. Saved to results folder. Default - True.
    • save_type - csv or npz. npz is not implemented yet.

Single or multiple evaluation

        # ================= Single structure ===================#

    |- root
    |   |- image_1
    |   |- image_2
    |   | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    For multiple_evaluation, I assumed the file system like this:

        # ================= structure 1 ===================#
    |- root
    |   |- file_10_20
    |        |- image_1
    |        |- image_2
    |        | - .....
    |    |- file_20_30
    |        |- image_1
    |        |- image_2
    |         | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    or nested structure like this....

        # ================= structure 2 ===================#

    |- root
    |   |- 01_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |   |- 02_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

To-do metrics

  • L1
  • L2
  • SSIM
  • PSNR
  • LPIPS
  • FID
  • IS

To-do tasks

  • implementation of the framework
  • primary check for errors
  • Sequential evaluation (i.e. folder1,folder2, folder3... vs ground_truth, useful for denoising, inpainting etc.)
  • unittest

Acknowledgement

Thanks to PhotoSynthesis Team for the wonderful implementation of the metrics. Please cite accordingly if you use PIQ for the evaluation.

Cheers!!

Owner
Sayed Nadim
A string is actually a collection of characters, much like myself.
Sayed Nadim
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023