Implementation of Common Image Evaluation Metrics by Sayed Nadim (sayednadim.github.io). The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

Overview

Image Quality Evaluation Metrics

Implementation of some common full reference image quality metrics. The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

The goal of this repo is to provide a common evaluation script for image evaluation tasks. It contains some commonly used image quality metrics for image evaluation (e.g., L1, L2, SSIM, PSNR, LPIPS, FID, IS).

Pull requests and corrections/suggestions will be cordially appreciated.

Inception Score is not correct. I will check and confirm. Other metrics are ok!

Please Note

  • Images are scaled to [0,1]. If you need to change the data range, please make sure to change the data range in SSIM and PSNR.
  • Number of generated images and ground truth images have to be exactly same.
  • I have resized the images to be (256,256). You can change the resolution based on your needs.
  • Please make sure that all the images (generated and ground_truth images) are in the corresponding folders.

Requirements

How to use

Edit config.yaml as per your need.

  • Run main.py

Usage

  • Options in config.yaml file
    • dataset_name - Name of the dataset (e.g. Places, DIV2K etc. Used for saving dataset name in csv file.). Default
      • Places
    • dataset_with_subfolders - Set to True if your dataset has sub-folders containing images. Default - False
    • multiple_evaluation - Whether you want sequential evaluation ro single evaluation. Please refer to the folder structure for this.
    • dataset_format - Whether you are providing flists or just path to the image folders. Default - image.
    • model_name - Name of the model. Used for saving metrics values in the CSV. Default - Own.
    • generated_image_path - Path to your generated images.
    • ground_truth_image_path - Path to your ground truth images.
    • batch_size - batch size you want to use. Default - 4.
    • image_shape - Shape of the image. Both generated image and ground truth images will be resized to this width. Default - [256, 256, 3].
    • threads - Threads to be used for multi-processing Default - 4.
    • random_crop - If you want random cropped image, instead of resized. Currently not implemented.
    • save_results - If you want to save the results in csv files. Saved to results folder. Default - True.
    • save_type - csv or npz. npz is not implemented yet.

Single or multiple evaluation

        # ================= Single structure ===================#

    |- root
    |   |- image_1
    |   |- image_2
    |   | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    For multiple_evaluation, I assumed the file system like this:

        # ================= structure 1 ===================#
    |- root
    |   |- file_10_20
    |        |- image_1
    |        |- image_2
    |        | - .....
    |    |- file_20_30
    |        |- image_1
    |        |- image_2
    |         | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    or nested structure like this....

        # ================= structure 2 ===================#

    |- root
    |   |- 01_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |   |- 02_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

To-do metrics

  • L1
  • L2
  • SSIM
  • PSNR
  • LPIPS
  • FID
  • IS

To-do tasks

  • implementation of the framework
  • primary check for errors
  • Sequential evaluation (i.e. folder1,folder2, folder3... vs ground_truth, useful for denoising, inpainting etc.)
  • unittest

Acknowledgement

Thanks to PhotoSynthesis Team for the wonderful implementation of the metrics. Please cite accordingly if you use PIQ for the evaluation.

Cheers!!

Owner
Sayed Nadim
A string is actually a collection of characters, much like myself.
Sayed Nadim
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
PAIRED in PyTorch šŸ”„

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022