Pytorch implementation of Compressive Transformers, from Deepmind

Overview

Compressive Transformer in Pytorch

Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-range language modelling. I will also combine this with an idea from another paper that adds gating at the residual intersection. The memory and the gating may be synergistic, and lead to further improvements in both language modeling as well as reinforcement learning.

PyPI version

Install

$ pip install compressive_transformer_pytorch

Usage

import torch
from compressive_transformer_pytorch import CompressiveTransformer

model = CompressiveTransformer(
    num_tokens = 20000,
    emb_dim = 128,                 # embedding dimensions, embedding factorization from Albert paper
    dim = 512,
    depth = 12,
    seq_len = 1024,
    mem_len = 1024,                # memory length
    cmem_len = 1024 // 4,          # compressed memory buffer length
    cmem_ratio = 4,                # compressed memory ratio, 4 was recommended in paper
    reconstruction_loss_weight = 1,# weight to place on compressed memory reconstruction loss
    attn_dropout = 0.1,            # dropout post-attention
    ff_dropout = 0.1,              # dropout in feedforward
    attn_layer_dropout = 0.1,      # dropout for attention layer output
    gru_gated_residual = True,     # whether to gate the residual intersection, from 'Stabilizing Transformer for RL' paper
    mogrify_gru = False,           # experimental feature that adds a mogrifier for the update and residual before gating by the GRU
    memory_layers = range(6, 13),  # specify which layers to use long-range memory, from 'Do Transformers Need LR Memory' paper
    ff_glu = True                  # use GLU variant for feedforward
)

inputs = torch.randint(0, 256, (1, 2048))
masks = torch.ones_like(inputs).bool()

segments = inputs.reshape(1, -1, 1024).transpose(0, 1)
masks = masks.reshape(1, -1, 1024).transpose(0, 1)

logits, memories, aux_loss = model(segments[0], mask = masks[0])
logits,        _, aux_loss = model(segments[1], mask = masks[1], memories = memories)

# memories is a named tuple that contains the memory (mem) and the compressed memory (cmem)

When training, you can use the AutoregressiveWrapper to have memory management across segments taken care of for you. As easy as it gets.

import torch
from compressive_transformer_pytorch import CompressiveTransformer
from compressive_transformer_pytorch import AutoregressiveWrapper

model = CompressiveTransformer(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 1024,
    mem_len = 1024,
    cmem_len = 256,
    cmem_ratio = 4,
    memory_layers = [5,6]
).cuda()

model = AutoregressiveWrapper(model)

inputs = torch.randint(0, 20000, (1, 2048 + 1)).cuda()

for loss, aux_loss, _ in model(inputs, return_loss = True):
    (loss + aux_loss).backward()
    # optimizer step and zero grad

# ... after much training ...

# generation is also greatly simplified and automated away
# just pass in the prime, which can be 1 start token or any length
# all is taken care of for you

prime = torch.ones(1, 1).cuda()  # assume 1 is start token
sample = model.generate(prime, 4096)

Citations

@misc{rae2019compressive,
    title   = {Compressive Transformers for Long-Range Sequence Modelling},
    author  = {Jack W. Rae and Anna Potapenko and Siddhant M. Jayakumar and Timothy P. Lillicrap},
    year    = {2019},
    eprint  = {1911.05507},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{parisotto2019stabilizing,
    title   = {Stabilizing Transformers for Reinforcement Learning},
    author  = {Emilio Parisotto and H. Francis Song and Jack W. Rae and Razvan Pascanu and Caglar Gulcehre and Siddhant M. Jayakumar and Max Jaderberg and Raphael Lopez Kaufman and Aidan Clark and Seb Noury and Matthew M. Botvinick and Nicolas Heess and Raia Hadsell},
    year    = {2019},
    eprint  = {1910.06764},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@inproceedings{rae-razavi-2020-transformers,
    title   = "Do Transformers Need Deep Long-Range Memory?",
    author  = "Rae, Jack  and
      Razavi, Ali",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month   = jul,
    year    = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url     = "https://www.aclweb.org/anthology/2020.acl-main.672"
}
@article{Shazeer2019FastTD,
    title   = {Fast Transformer Decoding: One Write-Head is All You Need},
    author  = {Noam Shazeer},
    journal = {ArXiv},
    year    = {2019},
    volume  = {abs/1911.02150}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
@misc{lan2019albert,
    title       = {ALBERT: A Lite BERT for Self-supervised Learning of Language Representations},
    author      = {Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel and Piyush Sharma and Radu Soricut},
    year        = {2019},
    url         = {https://arxiv.org/abs/1909.11942}
}
@misc{ding2021erniedoc,
    title   = {ERNIE-Doc: A Retrospective Long-Document Modeling Transformer},
    author  = {Siyu Ding and Junyuan Shang and Shuohuan Wang and Yu Sun and Hao Tian and Hua Wu and Haifeng Wang},
    year    = {2021},
    eprint  = {2012.15688},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Comments
  • aux_loss does not update any weigth

    aux_loss does not update any weigth

    Hi lucidrains, thanks for your implementation, it is very elegant and helped me a lot with my disertation. Anyway I can't understand a particular: it seems like aux_loss is not related to any weight because of the detaching in the last part of the SelfAttention layer. With the following code, for example, I get that there is no layer optimized by aux_loss:

    import torch
    from compressive_transformer_pytorch import CompressiveTransformer
    from compressive_transformer_pytorch import AutoregressiveWrapper
    
    model = CompressiveTransformer(
        num_tokens = 20000,
        dim = 512,
        depth = 6,
        seq_len = 1024,
        mem_len = 1024,
        cmem_len = 256,
        cmem_ratio = 4,
        memory_layers = [5,6]
    ).cuda()
    
    model = AutoregressiveWrapper(model)
    
    inputs = torch.randint(0, 20000, (1, 1024)).cuda()
    
    optimizer = torch.optim.Adam(model.parameters())
    
    for loss, aux_loss, _ in model(inputs, return_loss = True):
        optimizer.zero_grad(set_to_none=True)
        loss.backward(retain_graph=True)
        print("OPTIMIZED BY LOSS ************************************************************")
        for module_name, parameter in model.named_parameters():
            if parameter.grad is not None:
                print(module_name)
        optimizer.zero_grad(set_to_none=True)
        aux_loss.backward(retain_graph=True)
        print("OPTIMIZED BY AUX_LOSS ************************************************************")
        for module_name, parameter in model.named_parameters():
            if parameter.grad is not None:
                print(module_name)
    

    I am not expert about the PyTorch mechanisms, so maybe I am getting something wrong. Again thank you

    opened by StefanoBerti 3
  • How to use this for speech/audio generation?

    How to use this for speech/audio generation?

    Great work Phil! In their paper, the authors applied this model to speech modeling, how would you advise on what should I change to use for speech. Because in speech, the data are signals, we do not have num_tokens, nor do we have emb_dim. Our data input is simply, [batch, channel, time]. Any advice?

    opened by jinglescode 3
  • [Error] NameError: name 'math' is not defined in compressive_transformer_pytorch.py

    [Error] NameError: name 'math' is not defined in compressive_transformer_pytorch.py

    hello, I run code "examples/enwik8_simple" now, and I got error as follows:

    train.py:65: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) training: 0%| | 0/100000 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 101, in <module> for mlm_loss, aux_loss, is_last in model(next(train_loader), max_batch_size = MAX_BATCH_SIZE, return_loss = True): File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/autoregressive_wrapper.py", line 151, in forward logits, new_mem, aux_loss = self.net(xi_seg_b, mask = mask_seg_b, memories = mem, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 338, in f orward x, = ff(x) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 84, in fo rward out = self.fn(x, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 106, in f orward return self.fn(x, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 140, in f orward x = self.act(x) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 122, in f orward return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) NameError: name 'math' is not defined

    so I inserted "import math" into compressive_transformer_pytorch.py file and it work well. I hope you modify compressive_transformer_pytorch.py code.

    opened by dinoSpeech 3
  • Training enwik8 but loss fail to converge

    Training enwik8 but loss fail to converge

    Hi lucidrains, I appreciate your implementation very much, and it helps me a lot with understanding compressive transformer. However when I tried running your code (enwik8 and exactly the same code in github), and the loss failed to converge after 100 epochs. Is this in expectation ? Or should I do other additional effort to improve, for example tokenizing the raw data in enwik8 and remove all the xml tags ? The figure below is the training and validation loss while I train enwik8 with the same code as in github.

    截圖 2021-03-26 下午5 40 16 截圖 2021-03-26 下午5 41 22

    Thanks and look forward to your reply!

    opened by KaiPoChang 2
  • Details about text generation

    Details about text generation

    Hi lucidrains, Thank you for your excellent code. I am curious about the generation scripts. Could you tell me how to generate text with the compressive transformer? Because it has the compressive memory, maybe we cannot use the current predicted word as the input for the next generation (input length ==1). In addition, if the prompt has 100 words and we use tokens [0:100], tokens[1:101], tokens[2:102]... as the input for the following timesteps, the tokens[1:100] may overlap with the memory, because the memory already contains hidden states for tokens[1:100].

    I would be very appeciated if you can provide the generation scripts!

    Thank you

    opened by theseventhflow 3
  • Links to original tf code - fyi

    Links to original tf code - fyi

    After reading deepmind blog post I was looking forward to downloading model but no luck. Looking forward to your implementation.

    You may be aware of this post and link but if not this is the coder's original tf implementation. Hope it helps.

    Copy of comment to original model request:

    https://github.com/huggingface/transformers/issues/4688

    Interested in model weights too but currently not available. Author does mention releasing tf code here:

    https://news.ycombinator.com/item?id=22290227

    Requires tf 1.15+ and deepmind/sonnet ver 1.36. Link to python script here:

    https://github.com/deepmind/sonnet/blob/cd5b5fa48e15e4d020f744968f5209949ebe750f/sonnet/python/modules/nets/transformer.py#L915

    Have tried running as-is but doesn't appear to have options for training on custom data as per the paper and available data sets.

    opened by GenTxt 8
Releases(0.4.0)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022