Distributed Arcface Training in Pytorch

Related tags

Deep LearningMaske_FR
Overview

Distributed Arcface Training in Pytorch

This is a deep learning library that makes face recognition efficient, and effective, which can train tens of millions identity on a single server.

Requirements

How to Training

To train a model, run train.py with the path to the configs:

1. Single node, 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r50

2. Multiple nodes, each node 8 GPUs:

Node 0:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50

Node 1:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50

3.Training resnet2060 with 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r2060.py

Model Zoo

  • The models are available for non-commercial research purposes only.
  • All models can be found in here.
  • Baidu Yun Pan: e8pw
  • onedrive

Performance on ICCV2021-MFR

ICCV2021-MFR testset consists of non-celebrities so we can ensure that it has very few overlap with public available face recognition training set, such as MS1M and CASIA as they mostly collected from online celebrities. As the result, we can evaluate the FAIR performance for different algorithms.

For ICCV2021-MFR-ALL set, TAR is measured on all-to-all 1:1 protocal, with FAR less than 0.000001(e-6). The globalised multi-racial testset contains 242,143 identities and 1,624,305 images.

For ICCV2021-MFR-MASK set, TAR is measured on mask-to-nonmask 1:1 protocal, with FAR less than 0.0001(e-4). Mask testset contains 6,964 identities, 6,964 masked images and 13,928 non-masked images. There are totally 13,928 positive pairs and 96,983,824 negative pairs.

Datasets backbone Training throughout Size / MB ICCV2021-MFR-MASK ICCV2021-MFR-ALL
MS1MV3 r18 - 91 47.85 68.33
Glint360k r18 8536 91 53.32 72.07
MS1MV3 r34 - 130 58.72 77.36
Glint360k r34 6344 130 65.10 83.02
MS1MV3 r50 5500 166 63.85 80.53
Glint360k r50 5136 166 70.23 87.08
MS1MV3 r100 - 248 69.09 84.31
Glint360k r100 3332 248 75.57 90.66
MS1MV3 mobilefacenet 12185 7.8 41.52 65.26
Glint360k mobilefacenet 11197 7.8 44.52 66.48

Performance on IJB-C and Verification Datasets

Datasets backbone IJBC(1e-05) IJBC(1e-04) agedb30 cfp_fp lfw log
MS1MV3 r18 92.07 94.66 97.77 97.73 99.77 log
MS1MV3 r34 94.10 95.90 98.10 98.67 99.80 log
MS1MV3 r50 94.79 96.46 98.35 98.96 99.83 log
MS1MV3 r100 95.31 96.81 98.48 99.06 99.85 log
MS1MV3 r2060 95.34 97.11 98.67 99.24 99.87 log
Glint360k r18-0.1 93.16 95.33 97.72 97.73 99.77 log
Glint360k r34-0.1 95.16 96.56 98.33 98.78 99.82 log
Glint360k r50-0.1 95.61 96.97 98.38 99.20 99.83 log
Glint360k r100-0.1 95.88 97.32 98.48 99.29 99.82 log

Speed Benchmark

Arcface Torch can train large-scale face recognition training set efficiently and quickly. When the number of classes in training sets is greater than 300K and the training is sufficient, partial fc sampling strategy will get same accuracy with several times faster training performance and smaller GPU memory. Partial FC is a sparse variant of the model parallel architecture for large sacle face recognition. Partial FC use a sparse softmax, where each batch dynamicly sample a subset of class centers for training. In each iteration, only a sparse part of the parameters will be updated, which can reduce a lot of GPU memory and calculations. With Partial FC, we can scale trainset of 29 millions identities, the largest to date. Partial FC also supports multi-machine distributed training and mixed precision training.

Image text

More details see speed_benchmark.md in docs.

1. Training speed of different parallel methods (samples / second), Tesla V100 32GB * 8. (Larger is better)

- means training failed because of gpu memory limitations.

Number of Identities in Dataset Data Parallel Model Parallel Partial FC 0.1
125000 4681 4824 5004
1400000 1672 3043 4738
5500000 - 1389 3975
8000000 - - 3565
16000000 - - 2679
29000000 - - 1855

2. GPU memory cost of different parallel methods (MB per GPU), Tesla V100 32GB * 8. (Smaller is better)

Number of Identities in Dataset Data Parallel Model Parallel Partial FC 0.1
125000 7358 5306 4868
1400000 32252 11178 6056
5500000 - 32188 9854
8000000 - - 12310
16000000 - - 19950
29000000 - - 32324

Evaluation ICCV2021-MFR and IJB-C

More details see eval.md in docs.

Test

We tested many versions of PyTorch. Please create an issue if you are having trouble.

  • torch 1.6.0
  • torch 1.7.1
  • torch 1.8.0
  • torch 1.9.0

Citation

@inproceedings{deng2019arcface,
  title={Arcface: Additive angular margin loss for deep face recognition},
  author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4690--4699},
  year={2019}
}
@inproceedings{an2020partical_fc,
  title={Partial FC: Training 10 Million Identities on a Single Machine},
  author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
  Zhang, Debing and Fu Ying},
  booktitle={Arxiv 2010.05222},
  year={2020}
}
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022