PyTorch code for training MM-DistillNet for multimodal knowledge distillation

Overview

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

MM-DistillNet is a novel framework that is able to perform Multi-Object Detection and tracking using only ambient sound during inference time. The framework leverages on our new new MTA loss function that facilitates the distillation of information from multimodal teachers (RGB, thermal and depth) into an audio-only student network.

Illustration of MM-DistillNet

This repository contains the PyTorch implementation of our CVPR'2021 paper There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge. The repository builds on PyTorch-YOLOv3 Metrics and Yet-Another-EfficientDet-Pytorch codebases.

If you find the code useful for your research, please consider citing our paper:

@article{riverahurtado2021mmdistillnet,
  title={There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge},
  author={Rivera Valverde, Francisco and Valeria Hurtado, Juana and Valada, Abhinav},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  year={2021}
}

Demo

http://rl.uni-freiburg.de/research/multimodal-distill

System Requirements

  • Linux
  • Python 3.7
  • PyTorch 1.3
  • CUDA 10.1

IMPORTANT NOTE: These requirements are not necessarily mandatory. However, we have only tested the code under the above settings and cannot provide support for other setups.

Installation

a. Create a conda virtual environment.

git clone https://github.com/robot-learning-freiburg/MM-DistillNet.git
cd MM-DistillNet
conda create -n mmdistillnet_env
conda activate mmdistillnet_env

b. Install dependencies

pip install -r requirements.txt

Prepare datasets and configure run

We also supply our large-scale multimodal dataset with over 113,000 time-synchronized frames of RGB, depth, thermal, and audio modalities, available at http://multimodal-distill.cs.uni-freiburg.de/#dataset

Please make sure the data is available in the directory under the name data.

The binary download contains the expected folder format for our scripts to work. The path where the binary was extracted must be updated in the configuration files, in this case configs/mm-distillnet.cfg.

You will also need to download our trained teacher-models available here. Kindly download this files and have them available in the current directory, with the name of trained_models. The directory structure should look something like this:

>ls
configs/  evaluate.py  images/  LICENSE  logs/  mp3_to_pkl.py  README.md  requirements.txt  setup.cfg  src/  train.py trained_models/

>ls trained_models
LICENSE.txt              README.txt                             yet-another-efficientdet-d2-embedding.pth  yet-another-efficientdet-d2-rgb.pth
mm-distillnet.0.pth.tar  yet-another-efficientdet-d2-depth.pth  yet-another-efficientdet-d2.pth            yet-another-efficientdet-d2-thermal.pth

Additionally, the file configs/mm-distillnet.cfg contains support for different parallelization strategies and GPU/CPU support (using PyTorch's DataParallel and DistributedDataParallel)

Due to disk space constraints, we provide a mp3 version of the audio files. Librosa is known to be slow with mp3 files, so we also provide a mp3->pickle conversion utility. The idea is, that before training we convert the audio files to a spectogram and store it to a pickle file.

mp3_to_pkl.py --dir <path to the dataset>

Training and Evaluation

Training Procedure

Edit the config file appropriately in configs folder. Our best recipe is found under configs/mm-distillnet.cfg.

python train.py --config 
   

   

To run the full dataset We our method using 4 GPUs with 2.4 Gb memory each (The expected runtime is 7 days). After training, the best model would be stored under /best.pth.tar . This file can be used to evaluate the performance of the model.

Evaluation Procedure

Evaluate the performance of the model (Our best model can be found under trained_models/mm-distillnet.0.pth.tar):

python evaluate.py --config 
   
     --checkpoint 
    

    
   

Results

The evaluation results of our method, after bayesian optimization, are (more details can be found in the paper):

Method KD [email protected] [email protected] [email protected] CDx CDy
StereoSoundNet[4] RGB 44.05 62.38 41.46 3.00 2.24
:--- ------------- ------------- ------------- ------------- ------------- -------------
MM-DistillNet RGB 61.62 84.29 59.66 1.27 0.69

Pre-Trained Models

Our best pre-trained model can be found on the dataset installation path.

Acknowledgements

We have used utility functions from other open-source projects. We especially thank the authors of:

Contacts

License

For academic usage, the code is released under the GPLv3 license. For any commercial purpose, please contact the authors.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022