PyTorch code for training MM-DistillNet for multimodal knowledge distillation

Overview

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

MM-DistillNet is a novel framework that is able to perform Multi-Object Detection and tracking using only ambient sound during inference time. The framework leverages on our new new MTA loss function that facilitates the distillation of information from multimodal teachers (RGB, thermal and depth) into an audio-only student network.

Illustration of MM-DistillNet

This repository contains the PyTorch implementation of our CVPR'2021 paper There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge. The repository builds on PyTorch-YOLOv3 Metrics and Yet-Another-EfficientDet-Pytorch codebases.

If you find the code useful for your research, please consider citing our paper:

@article{riverahurtado2021mmdistillnet,
  title={There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge},
  author={Rivera Valverde, Francisco and Valeria Hurtado, Juana and Valada, Abhinav},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  year={2021}
}

Demo

http://rl.uni-freiburg.de/research/multimodal-distill

System Requirements

  • Linux
  • Python 3.7
  • PyTorch 1.3
  • CUDA 10.1

IMPORTANT NOTE: These requirements are not necessarily mandatory. However, we have only tested the code under the above settings and cannot provide support for other setups.

Installation

a. Create a conda virtual environment.

git clone https://github.com/robot-learning-freiburg/MM-DistillNet.git
cd MM-DistillNet
conda create -n mmdistillnet_env
conda activate mmdistillnet_env

b. Install dependencies

pip install -r requirements.txt

Prepare datasets and configure run

We also supply our large-scale multimodal dataset with over 113,000 time-synchronized frames of RGB, depth, thermal, and audio modalities, available at http://multimodal-distill.cs.uni-freiburg.de/#dataset

Please make sure the data is available in the directory under the name data.

The binary download contains the expected folder format for our scripts to work. The path where the binary was extracted must be updated in the configuration files, in this case configs/mm-distillnet.cfg.

You will also need to download our trained teacher-models available here. Kindly download this files and have them available in the current directory, with the name of trained_models. The directory structure should look something like this:

>ls
configs/  evaluate.py  images/  LICENSE  logs/  mp3_to_pkl.py  README.md  requirements.txt  setup.cfg  src/  train.py trained_models/

>ls trained_models
LICENSE.txt              README.txt                             yet-another-efficientdet-d2-embedding.pth  yet-another-efficientdet-d2-rgb.pth
mm-distillnet.0.pth.tar  yet-another-efficientdet-d2-depth.pth  yet-another-efficientdet-d2.pth            yet-another-efficientdet-d2-thermal.pth

Additionally, the file configs/mm-distillnet.cfg contains support for different parallelization strategies and GPU/CPU support (using PyTorch's DataParallel and DistributedDataParallel)

Due to disk space constraints, we provide a mp3 version of the audio files. Librosa is known to be slow with mp3 files, so we also provide a mp3->pickle conversion utility. The idea is, that before training we convert the audio files to a spectogram and store it to a pickle file.

mp3_to_pkl.py --dir <path to the dataset>

Training and Evaluation

Training Procedure

Edit the config file appropriately in configs folder. Our best recipe is found under configs/mm-distillnet.cfg.

python train.py --config 
   

   

To run the full dataset We our method using 4 GPUs with 2.4 Gb memory each (The expected runtime is 7 days). After training, the best model would be stored under /best.pth.tar . This file can be used to evaluate the performance of the model.

Evaluation Procedure

Evaluate the performance of the model (Our best model can be found under trained_models/mm-distillnet.0.pth.tar):

python evaluate.py --config 
   
     --checkpoint 
    

    
   

Results

The evaluation results of our method, after bayesian optimization, are (more details can be found in the paper):

Method KD [email protected] [email protected] [email protected] CDx CDy
StereoSoundNet[4] RGB 44.05 62.38 41.46 3.00 2.24
:--- ------------- ------------- ------------- ------------- ------------- -------------
MM-DistillNet RGB 61.62 84.29 59.66 1.27 0.69

Pre-Trained Models

Our best pre-trained model can be found on the dataset installation path.

Acknowledgements

We have used utility functions from other open-source projects. We especially thank the authors of:

Contacts

License

For academic usage, the code is released under the GPLv3 license. For any commercial purpose, please contact the authors.

In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022