PyTorch code for training MM-DistillNet for multimodal knowledge distillation

Overview

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

MM-DistillNet is a novel framework that is able to perform Multi-Object Detection and tracking using only ambient sound during inference time. The framework leverages on our new new MTA loss function that facilitates the distillation of information from multimodal teachers (RGB, thermal and depth) into an audio-only student network.

Illustration of MM-DistillNet

This repository contains the PyTorch implementation of our CVPR'2021 paper There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge. The repository builds on PyTorch-YOLOv3 Metrics and Yet-Another-EfficientDet-Pytorch codebases.

If you find the code useful for your research, please consider citing our paper:

@article{riverahurtado2021mmdistillnet,
  title={There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge},
  author={Rivera Valverde, Francisco and Valeria Hurtado, Juana and Valada, Abhinav},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  year={2021}
}

Demo

http://rl.uni-freiburg.de/research/multimodal-distill

System Requirements

  • Linux
  • Python 3.7
  • PyTorch 1.3
  • CUDA 10.1

IMPORTANT NOTE: These requirements are not necessarily mandatory. However, we have only tested the code under the above settings and cannot provide support for other setups.

Installation

a. Create a conda virtual environment.

git clone https://github.com/robot-learning-freiburg/MM-DistillNet.git
cd MM-DistillNet
conda create -n mmdistillnet_env
conda activate mmdistillnet_env

b. Install dependencies

pip install -r requirements.txt

Prepare datasets and configure run

We also supply our large-scale multimodal dataset with over 113,000 time-synchronized frames of RGB, depth, thermal, and audio modalities, available at http://multimodal-distill.cs.uni-freiburg.de/#dataset

Please make sure the data is available in the directory under the name data.

The binary download contains the expected folder format for our scripts to work. The path where the binary was extracted must be updated in the configuration files, in this case configs/mm-distillnet.cfg.

You will also need to download our trained teacher-models available here. Kindly download this files and have them available in the current directory, with the name of trained_models. The directory structure should look something like this:

>ls
configs/  evaluate.py  images/  LICENSE  logs/  mp3_to_pkl.py  README.md  requirements.txt  setup.cfg  src/  train.py trained_models/

>ls trained_models
LICENSE.txt              README.txt                             yet-another-efficientdet-d2-embedding.pth  yet-another-efficientdet-d2-rgb.pth
mm-distillnet.0.pth.tar  yet-another-efficientdet-d2-depth.pth  yet-another-efficientdet-d2.pth            yet-another-efficientdet-d2-thermal.pth

Additionally, the file configs/mm-distillnet.cfg contains support for different parallelization strategies and GPU/CPU support (using PyTorch's DataParallel and DistributedDataParallel)

Due to disk space constraints, we provide a mp3 version of the audio files. Librosa is known to be slow with mp3 files, so we also provide a mp3->pickle conversion utility. The idea is, that before training we convert the audio files to a spectogram and store it to a pickle file.

mp3_to_pkl.py --dir <path to the dataset>

Training and Evaluation

Training Procedure

Edit the config file appropriately in configs folder. Our best recipe is found under configs/mm-distillnet.cfg.

python train.py --config 
   

   

To run the full dataset We our method using 4 GPUs with 2.4 Gb memory each (The expected runtime is 7 days). After training, the best model would be stored under /best.pth.tar . This file can be used to evaluate the performance of the model.

Evaluation Procedure

Evaluate the performance of the model (Our best model can be found under trained_models/mm-distillnet.0.pth.tar):

python evaluate.py --config 
   
     --checkpoint 
    

    
   

Results

The evaluation results of our method, after bayesian optimization, are (more details can be found in the paper):

Method KD [email protected] [email protected] [email protected] CDx CDy
StereoSoundNet[4] RGB 44.05 62.38 41.46 3.00 2.24
:--- ------------- ------------- ------------- ------------- ------------- -------------
MM-DistillNet RGB 61.62 84.29 59.66 1.27 0.69

Pre-Trained Models

Our best pre-trained model can be found on the dataset installation path.

Acknowledgements

We have used utility functions from other open-source projects. We especially thank the authors of:

Contacts

License

For academic usage, the code is released under the GPLv3 license. For any commercial purpose, please contact the authors.

A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022