PyTorch code for training MM-DistillNet for multimodal knowledge distillation

Overview

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

MM-DistillNet is a novel framework that is able to perform Multi-Object Detection and tracking using only ambient sound during inference time. The framework leverages on our new new MTA loss function that facilitates the distillation of information from multimodal teachers (RGB, thermal and depth) into an audio-only student network.

Illustration of MM-DistillNet

This repository contains the PyTorch implementation of our CVPR'2021 paper There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge. The repository builds on PyTorch-YOLOv3 Metrics and Yet-Another-EfficientDet-Pytorch codebases.

If you find the code useful for your research, please consider citing our paper:

@article{riverahurtado2021mmdistillnet,
  title={There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge},
  author={Rivera Valverde, Francisco and Valeria Hurtado, Juana and Valada, Abhinav},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  year={2021}
}

Demo

http://rl.uni-freiburg.de/research/multimodal-distill

System Requirements

  • Linux
  • Python 3.7
  • PyTorch 1.3
  • CUDA 10.1

IMPORTANT NOTE: These requirements are not necessarily mandatory. However, we have only tested the code under the above settings and cannot provide support for other setups.

Installation

a. Create a conda virtual environment.

git clone https://github.com/robot-learning-freiburg/MM-DistillNet.git
cd MM-DistillNet
conda create -n mmdistillnet_env
conda activate mmdistillnet_env

b. Install dependencies

pip install -r requirements.txt

Prepare datasets and configure run

We also supply our large-scale multimodal dataset with over 113,000 time-synchronized frames of RGB, depth, thermal, and audio modalities, available at http://multimodal-distill.cs.uni-freiburg.de/#dataset

Please make sure the data is available in the directory under the name data.

The binary download contains the expected folder format for our scripts to work. The path where the binary was extracted must be updated in the configuration files, in this case configs/mm-distillnet.cfg.

You will also need to download our trained teacher-models available here. Kindly download this files and have them available in the current directory, with the name of trained_models. The directory structure should look something like this:

>ls
configs/  evaluate.py  images/  LICENSE  logs/  mp3_to_pkl.py  README.md  requirements.txt  setup.cfg  src/  train.py trained_models/

>ls trained_models
LICENSE.txt              README.txt                             yet-another-efficientdet-d2-embedding.pth  yet-another-efficientdet-d2-rgb.pth
mm-distillnet.0.pth.tar  yet-another-efficientdet-d2-depth.pth  yet-another-efficientdet-d2.pth            yet-another-efficientdet-d2-thermal.pth

Additionally, the file configs/mm-distillnet.cfg contains support for different parallelization strategies and GPU/CPU support (using PyTorch's DataParallel and DistributedDataParallel)

Due to disk space constraints, we provide a mp3 version of the audio files. Librosa is known to be slow with mp3 files, so we also provide a mp3->pickle conversion utility. The idea is, that before training we convert the audio files to a spectogram and store it to a pickle file.

mp3_to_pkl.py --dir <path to the dataset>

Training and Evaluation

Training Procedure

Edit the config file appropriately in configs folder. Our best recipe is found under configs/mm-distillnet.cfg.

python train.py --config 
   

   

To run the full dataset We our method using 4 GPUs with 2.4 Gb memory each (The expected runtime is 7 days). After training, the best model would be stored under /best.pth.tar . This file can be used to evaluate the performance of the model.

Evaluation Procedure

Evaluate the performance of the model (Our best model can be found under trained_models/mm-distillnet.0.pth.tar):

python evaluate.py --config 
   
     --checkpoint 
    

    
   

Results

The evaluation results of our method, after bayesian optimization, are (more details can be found in the paper):

Method KD [email protected] [email protected] [email protected] CDx CDy
StereoSoundNet[4] RGB 44.05 62.38 41.46 3.00 2.24
:--- ------------- ------------- ------------- ------------- ------------- -------------
MM-DistillNet RGB 61.62 84.29 59.66 1.27 0.69

Pre-Trained Models

Our best pre-trained model can be found on the dataset installation path.

Acknowledgements

We have used utility functions from other open-source projects. We especially thank the authors of:

Contacts

License

For academic usage, the code is released under the GPLv3 license. For any commercial purpose, please contact the authors.

Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022