Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Overview

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective

Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Installing

Standard pip instal [Recommended]

TODO

If you are going to use a gpu the do this first before continuing (or check the offical website: https://pytorch.org/get-started/locally/):

pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Otherwise, just doing the follwoing should work.

pip install automl

If that worked, then you should be able to import is as follows:

import automl

Manual installation [Development]

To use library first get the code from this repo (e.g. fork it on github):

git clone [email protected]/brando90/automl-meta-learning.git

Then install it in development mode in your python env with python >=3.9 (read modules_in_python.md to learn about python envs in uutils). E.g. create your env with conda:

conda create -n metalearning python=3.9
conda activate metalearning

Then install it in edibable mode and all it's depedencies with pip in the currently activated conda environment:

pip install -e ~/automl-meta-learning/automl-proj-src/

since the depedencies have not been written install them:

pip install -e ~/ultimate-utils/ultimate-utils-proj-src

then test as followsing:

python -c "import uutils; print(uutils); uutils.hello()"
python -c "import meta_learning; print(meta_learning)"
python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

output should be something like this:

hello from uutils __init__.py in: (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)" (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()" hello from torch_uu __init__.py in: ">
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import uutils; print(uutils); uutils.hello()"

       
        

hello from uutils __init__.py in:

        
         

(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)"

         
          
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

          
           

hello from torch_uu __init__.py in:

            
           
          
         
        
       

Reproducing Results

TODO

Citation

B. Miranda, Y.Wang, O. Koyejo.
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective. 
(Planned Release Date December 2021).
https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022