Single object tracking and segmentation.

Related tags

Deep LearningSOTS
Overview

Single/Multiple Object Tracking and Segmentation

Codes and comparison of recent single/multiple object tracking and segmentation.

News

💥 AutoMatch is accepted by ICCV2021. The training and testing code has been released in this codebase.

💥 CSTrack ranks 5/4000 at Tianchi Global AI Competition.

💥 Ocean is accepted by ECCV2020. [OceanPlus] is accepted by IEEE TIP.

💥 SiamDW is accepted by CVPR2019 and selected as oral presentation.

Supported Trackers (SOT and MOT)

Single-Object Tracking (SOT)

Multi-Object Tracking (MOT)

Results Comparison

Branches

  • main: for our SOT trackers
  • MOT: for our MOT trackers
  • v0: old codebase supporting OceanPlus and TensorRT testing.

Please clone the branch to your needs.

Structure

  • experiments: training and testing settings
  • demo: figures for readme
  • dataset: testing dataset
  • data: training dataset
  • lib: core scripts for all trackers
  • snapshot: pre-trained models
  • pretrain: models trained on ImageNet (for training)
  • tracking: training and testing interface
$SOTS
|—— experimnets
|—— lib
|—— snapshot
  |—— xxx.model
|—— dataset
  |—— VOT2019.json 
  |—— VOT2019
     |—— ants1...
  |—— VOT2020
     |—— ants1...
|—— ...

Tracker Details

AutoMatch [ICCV2021]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
AutoMatch replaces the essence of Siamese tracking, i.e. the cross-correlation and its variants, to a learnable matching network. The underlying motivation is that heuristic matching network design relies heavily on expert experience. Moreover, we experimentally find that one sole matching operator is difficult to guarantee stable tracking in all challenging environments. In this work, we introduce six novel matching operators from the perspective of feature fusion instead of explicit similarity learning, namely Concatenation, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-Transformer and Transductive-Guidance, to explore more feasibility on matching operator selection. The analyses reveal these operators' selective adaptability on different environment degradation types, which inspires us to combine them to explore complementary features. We propose binary channel manipulation (BCM) to search for the optimal combination of these operators.

Ocean

Ocean [ECCV2020]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]

Ocean proposes a general anchor-free based tracking framework. It includes a pixel-based anchor-free regression network to solve the weak rectification problem of RPN, and an object-aware classification network to learn robust target-related representation. Moreover, we introduce an effective multi-scale feature combination module to replace heavy result fusion mechanism in recent Siamese trackers. This work also serves as the baseline model of OceanPlus. An additional TensorRT toy demo is provided in this repo.

Ocean

SiamDW [CVPR2019]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
SiamDW is one of the pioneering work using deep backbone networks for Siamese tracking framework. Based on sufficient analysis on network depth, output size, receptive field and padding mode, we propose guidelines to build backbone networks for Siamese tracker. Several deeper and wider networks are built following the guidelines with the proposed CIR module.

SiamDW

OceanPlus [IEEE TIP]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
Official implementation of the OceanPlus tracker. It proposes an attention retrieval network (ARN) to perform soft spatial constraints on backbone features. Concretely, we first build a look-up-table (LUT) with the ground-truth mask in the starting frame, and then retrieve the LUT to obtain a target-aware attention map for suppressing the negative influence of background clutter. Furthermore, we introduce a multi-resolution multi-stage segmentation network (MMS) to ulteriorly weaken responses of background clutter by reusing the predicted mask to filter backbone features.

OceanPlus


CSTrack [Arxiv now]

[Paper] [Training and Testing Tutorial] [Demo]
CSTrack proposes a strong ReID based one-shot MOT framework. It includes a novel cross-correlation network that can effectively impel the separate branches to learn task-dependent representations, and a scale-aware attention network that learns discriminative embeddings to improve the ReID capability. This work also provides an analysis of the weak data association ability in one-shot MOT methods. Our improvements make the data association ability of our one-shot model is comparable to two-stage methods while running more faster.

CSTrack

This version can achieve the performance described in the paper (70.7 MOTA on MOT16, 70.6 MOTA on MOT17). The new version will be released soon. If you are interested in our work or have any questions, please contact me at [email protected].

Other trackers, coming soon ...

☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️

References

https://github.com/StrangerZhang/pysot-toolkit
...

Contributors

Owner
ZP ZHANG
NLPR, CASIA. Ph.D condidate
ZP ZHANG
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022