A MNIST-like fashion product database. Benchmark

Overview

Fashion-MNIST

GitHub stars Gitter Readme-CN Readme-JA License: MIT Year-In-Review

Table of Contents

Fashion-MNIST is a dataset of Zalando's article imagesโ€”consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.

Here's an example of how the data looks (each class takes three-rows):

Why we made Fashion-MNIST

The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."

To Serious Machine Learning Researchers

Seriously, we are talking about replacing MNIST. Here are some good reasons:

Get the Data

Many ML libraries already include Fashion-MNIST data/API, give it a try!

You can use direct links to download the dataset. The data is stored in the same format as the original MNIST data.

Name Content Examples Size Link MD5 Checksum
train-images-idx3-ubyte.gz training set images 60,000 26 MBytes Download 8d4fb7e6c68d591d4c3dfef9ec88bf0d
train-labels-idx1-ubyte.gz training set labels 60,000 29 KBytes Download 25c81989df183df01b3e8a0aad5dffbe
t10k-images-idx3-ubyte.gz test set images 10,000 4.3 MBytes Download bef4ecab320f06d8554ea6380940ec79
t10k-labels-idx1-ubyte.gz test set labels 10,000 5.1 KBytes Download bb300cfdad3c16e7a12a480ee83cd310

Alternatively, you can clone this GitHub repository; the dataset appears under data/fashion. This repo also contains some scripts for benchmark and visualization.

git clone [email protected]:zalandoresearch/fashion-mnist.git

Labels

Each training and test example is assigned to one of the following labels:

Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Usage

Loading data with Python (requires NumPy)

Use utils/mnist_reader in this repo:

import mnist_reader
X_train, y_train = mnist_reader.load_mnist('data/fashion', kind='train')
X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k')

Loading data with Tensorflow

Make sure you have downloaded the data and placed it in data/fashion. Otherwise, Tensorflow will download and use the original MNIST.

from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets('data/fashion')

data.train.next_batch(BATCH_SIZE)

Note, Tensorflow supports passing in a source url to the read_data_sets. You may use:

data = input_data.read_data_sets('data/fashion', source_url='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/')

Also, an official Tensorflow tutorial of using tf.keras, a high-level API to train Fashion-MNIST can be found here.

Loading data with other machine learning libraries

To date, the following libraries have included Fashion-MNIST as a built-in dataset. Therefore, you don't need to download Fashion-MNIST by yourself. Just follow their API and you are ready to go.

You are welcome to make pull requests to other open-source machine learning packages, improving their support to Fashion-MNIST dataset.

Loading data with other languages

As one of the Machine Learning community's most popular datasets, MNIST has inspired people to implement loaders in many different languages. You can use these loaders with the Fashion-MNIST dataset as well. (Note: may require decompressing first.) To date, we haven't yet tested all of these loaders with Fashion-MNIST.

Benchmark

We built an automatic benchmarking system based on scikit-learn that covers 129 classifiers (but no deep learning) with different parameters. Find the results here.

You can reproduce the results by running benchmark/runner.py. We recommend building and deploying this Dockerfile.

You are welcome to submit your benchmark; simply create a new issue and we'll list your results here. Before doing that, please make sure it does not already appear in this list. Visit our contributor guidelines for additional details.

The table below collects the submitted benchmarks. Note that we haven't yet tested these results. You are welcome to validate the results using the code provided by the submitter. Test accuracy may differ due to the number of epoch, batch size, etc. To correct this table, please create a new issue.

Classifier Preprocessing Fashion test accuracy MNIST test accuracy Submitter Code
2 Conv+pooling None 0.876 - Kashif Rasul ๐Ÿ”—
2 Conv+pooling None 0.916 - Tensorflow's doc ๐Ÿ”—
2 Conv+pooling+ELU activation (PyTorch) None 0.903 - @AbhirajHinge ๐Ÿ”—
2 Conv Normalization, random horizontal flip, random vertical flip, random translation, random rotation. 0.919 0.971 Kyriakos Efthymiadis ๐Ÿ”—
2 Conv <100K parameters None 0.925 0.992 @hardmaru ๐Ÿ”—
2 Conv ~113K parameters Normalization 0.922 0.993 Abel G. ๐Ÿ”—
2 Conv+3 FC ~1.8M parameters Normalization 0.932 0.994 @Xfan1025 ๐Ÿ”—
2 Conv+3 FC ~500K parameters Augmentation, batch normalization 0.934 0.994 @cmasch ๐Ÿ”—
2 Conv+pooling+BN None 0.934 - @khanguyen1207 ๐Ÿ”—
2 Conv+2 FC Random Horizontal Flips 0.939 - @ashmeet13 ๐Ÿ”—
3 Conv+2 FC None 0.907 - @Cenk BircanoฤŸlu ๐Ÿ”—
3 Conv+pooling+BN None 0.903 0.994 @meghanabhange ๐Ÿ”—
3 Conv+pooling+2 FC+dropout None 0.926 - @Umberto Griffo ๐Ÿ”—
3 Conv+BN+pooling None 0.921 0.992 @gchhablani ๐Ÿ”—
5 Conv+BN+pooling None 0.931 - @Noumanmufc1 ๐Ÿ”—
CNN with optional shortcuts, dense-like connectivity standardization+augmentation+random erasing 0.947 - @kennivich ๐Ÿ”—
GRU+SVM None 0.888 0.965 @AFAgarap ๐Ÿ”—
GRU+SVM with dropout None 0.897 0.988 @AFAgarap ๐Ÿ”—
WRN40-4 8.9M params standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.967 - @ajbrock ๐Ÿ”— ๐Ÿ”—
DenseNet-BC 768K params standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.954 - @ajbrock ๐Ÿ”— ๐Ÿ”—
MobileNet augmentation (horizontal flips) 0.950 - @่‹ๅ‰‘ๆž— ๐Ÿ”—
ResNet18 Normalization, random horizontal flip, random vertical flip, random translation, random rotation. 0.949 0.979 Kyriakos Efthymiadis ๐Ÿ”—
GoogleNet with cross-entropy loss None 0.937 - @Cenk BircanoฤŸlu ๐Ÿ”—
AlexNet with Triplet loss None 0.899 - @Cenk BircanoฤŸlu ๐Ÿ”—
SqueezeNet with cyclical learning rate 200 epochs None 0.900 - @snakers4 ๐Ÿ”—
Dual path network with wide resnet 28-10 standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.957 - @Queequeg ๐Ÿ”—
MLP 256-128-100 None 0.8833 - @heitorrapela ๐Ÿ”—
VGG16 26M parameters None 0.935 - @QuantumLiu ๐Ÿ”— ๐Ÿ”—
WRN-28-10 standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.959 - @zhunzhong07 ๐Ÿ”—
WRN-28-10 + Random Erasing standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.963 - @zhunzhong07 ๐Ÿ”—
Human Performance Crowd-sourced evaluation of human (with no fashion expertise) performance. 1000 randomly sampled test images, 3 labels per image, majority labelling. 0.835 - Leo -
Capsule Network 8M parameters Normalization and shift at most 2 pixel and horizontal flip 0.936 - @XifengGuo ๐Ÿ”—
HOG+SVM HOG 0.926 - @subalde ๐Ÿ”—
XgBoost scaling the pixel values to mean=0.0 and var=1.0 0.898 0.958 @anktplwl91 ๐Ÿ”—
DENSER - 0.953 0.997 @fillassuncao ๐Ÿ”— ๐Ÿ”—
Dyra-Net Rescale to unit interval 0.906 - @Dirk Schรคfer ๐Ÿ”— ๐Ÿ”—
Google AutoML 24 compute hours (higher quality) 0.939 - @Sebastian Heinz ๐Ÿ”—
Fastai Resnet50+Fine-tuning+Softmax on last layer's activations 0.9312 - @Sayak ๐Ÿ”—

Other Explorations of Fashion-MNIST

Fashion-MNIST: Year in Review

Fashion-MNIST on Google Scholar

Generative adversarial networks (GANs)

Clustering

Video Tutorial

Machine Learning Meets Fashion by Yufeng G @ Google Cloud

Machine Learning Meets Fashion

Introduction to Kaggle Kernels by Yufeng G @ Google Cloud

Introduction to Kaggle Kernels

ๅŠจๆ‰‹ๅญฆๆทฑๅบฆๅญฆไน  by Mu Li @ Amazon AI

MXNet/Gluonไธญๆ–‡้ข‘้“

Apache MXNet์œผ๋กœ ๋ฐฐ์›Œ๋ณด๋Š” ๋”ฅ๋Ÿฌ๋‹(Deep Learning) - ๊น€๋ฌดํ˜„ (AWS ์†”๋ฃจ์…˜์ฆˆ์•„ํ‚คํ…ํŠธ)

Apache MXNet์œผ๋กœ ๋ฐฐ์›Œ๋ณด๋Š” ๋”ฅ๋Ÿฌ๋‹(Deep Learning)

Visualization

t-SNE on Fashion-MNIST (left) and original MNIST (right)

PCA on Fashion-MNIST (left) and original MNIST (right)

UMAP on Fashion-MNIST (left) and original MNIST (right)

PyMDE on Fashion-MNIST (left) and original MNIST (right)

Contributing

Thanks for your interest in contributing! There are many ways to get involved; start with our contributor guidelines and then check these open issues for specific tasks.

Contact

To discuss the dataset, please use Gitter.

Citing Fashion-MNIST

If you use Fashion-MNIST in a scientific publication, we would appreciate references to the following paper:

Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Han Xiao, Kashif Rasul, Roland Vollgraf. arXiv:1708.07747

Biblatex entry:

@online{xiao2017/online,
  author       = {Han Xiao and Kashif Rasul and Roland Vollgraf},
  title        = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
  date         = {2017-08-28},
  year         = {2017},
  eprintclass  = {cs.LG},
  eprinttype   = {arXiv},
  eprint       = {cs.LG/1708.07747},
}

Who is citing Fashion-MNIST?

License

The MIT License (MIT) Copyright ยฉ [2017] Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the โ€œSoftwareโ€), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED โ€œAS ISโ€, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction ์ด repo๋Š” pose estimation์„ ์—ฐ๊ตฌํ•˜๊ณ  ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๊ธฐ

Kim Junho 1 Dec 22, 2021
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sysยญtems Seยญcuยญriยญty 27 Dec 22, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryล›ciล„ski, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023