A MNIST-like fashion product database. Benchmark

Overview

Fashion-MNIST

GitHub stars Gitter Readme-CN Readme-JA License: MIT Year-In-Review

Table of Contents

Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.

Here's an example of how the data looks (each class takes three-rows):

Why we made Fashion-MNIST

The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."

To Serious Machine Learning Researchers

Seriously, we are talking about replacing MNIST. Here are some good reasons:

Get the Data

Many ML libraries already include Fashion-MNIST data/API, give it a try!

You can use direct links to download the dataset. The data is stored in the same format as the original MNIST data.

Name Content Examples Size Link MD5 Checksum
train-images-idx3-ubyte.gz training set images 60,000 26 MBytes Download 8d4fb7e6c68d591d4c3dfef9ec88bf0d
train-labels-idx1-ubyte.gz training set labels 60,000 29 KBytes Download 25c81989df183df01b3e8a0aad5dffbe
t10k-images-idx3-ubyte.gz test set images 10,000 4.3 MBytes Download bef4ecab320f06d8554ea6380940ec79
t10k-labels-idx1-ubyte.gz test set labels 10,000 5.1 KBytes Download bb300cfdad3c16e7a12a480ee83cd310

Alternatively, you can clone this GitHub repository; the dataset appears under data/fashion. This repo also contains some scripts for benchmark and visualization.

git clone [email protected]:zalandoresearch/fashion-mnist.git

Labels

Each training and test example is assigned to one of the following labels:

Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Usage

Loading data with Python (requires NumPy)

Use utils/mnist_reader in this repo:

import mnist_reader
X_train, y_train = mnist_reader.load_mnist('data/fashion', kind='train')
X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k')

Loading data with Tensorflow

Make sure you have downloaded the data and placed it in data/fashion. Otherwise, Tensorflow will download and use the original MNIST.

from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets('data/fashion')

data.train.next_batch(BATCH_SIZE)

Note, Tensorflow supports passing in a source url to the read_data_sets. You may use:

data = input_data.read_data_sets('data/fashion', source_url='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/')

Also, an official Tensorflow tutorial of using tf.keras, a high-level API to train Fashion-MNIST can be found here.

Loading data with other machine learning libraries

To date, the following libraries have included Fashion-MNIST as a built-in dataset. Therefore, you don't need to download Fashion-MNIST by yourself. Just follow their API and you are ready to go.

You are welcome to make pull requests to other open-source machine learning packages, improving their support to Fashion-MNIST dataset.

Loading data with other languages

As one of the Machine Learning community's most popular datasets, MNIST has inspired people to implement loaders in many different languages. You can use these loaders with the Fashion-MNIST dataset as well. (Note: may require decompressing first.) To date, we haven't yet tested all of these loaders with Fashion-MNIST.

Benchmark

We built an automatic benchmarking system based on scikit-learn that covers 129 classifiers (but no deep learning) with different parameters. Find the results here.

You can reproduce the results by running benchmark/runner.py. We recommend building and deploying this Dockerfile.

You are welcome to submit your benchmark; simply create a new issue and we'll list your results here. Before doing that, please make sure it does not already appear in this list. Visit our contributor guidelines for additional details.

The table below collects the submitted benchmarks. Note that we haven't yet tested these results. You are welcome to validate the results using the code provided by the submitter. Test accuracy may differ due to the number of epoch, batch size, etc. To correct this table, please create a new issue.

Classifier Preprocessing Fashion test accuracy MNIST test accuracy Submitter Code
2 Conv+pooling None 0.876 - Kashif Rasul 🔗
2 Conv+pooling None 0.916 - Tensorflow's doc 🔗
2 Conv+pooling+ELU activation (PyTorch) None 0.903 - @AbhirajHinge 🔗
2 Conv Normalization, random horizontal flip, random vertical flip, random translation, random rotation. 0.919 0.971 Kyriakos Efthymiadis 🔗
2 Conv <100K parameters None 0.925 0.992 @hardmaru 🔗
2 Conv ~113K parameters Normalization 0.922 0.993 Abel G. 🔗
2 Conv+3 FC ~1.8M parameters Normalization 0.932 0.994 @Xfan1025 🔗
2 Conv+3 FC ~500K parameters Augmentation, batch normalization 0.934 0.994 @cmasch 🔗
2 Conv+pooling+BN None 0.934 - @khanguyen1207 🔗
2 Conv+2 FC Random Horizontal Flips 0.939 - @ashmeet13 🔗
3 Conv+2 FC None 0.907 - @Cenk Bircanoğlu 🔗
3 Conv+pooling+BN None 0.903 0.994 @meghanabhange 🔗
3 Conv+pooling+2 FC+dropout None 0.926 - @Umberto Griffo 🔗
3 Conv+BN+pooling None 0.921 0.992 @gchhablani 🔗
5 Conv+BN+pooling None 0.931 - @Noumanmufc1 🔗
CNN with optional shortcuts, dense-like connectivity standardization+augmentation+random erasing 0.947 - @kennivich 🔗
GRU+SVM None 0.888 0.965 @AFAgarap 🔗
GRU+SVM with dropout None 0.897 0.988 @AFAgarap 🔗
WRN40-4 8.9M params standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.967 - @ajbrock 🔗 🔗
DenseNet-BC 768K params standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.954 - @ajbrock 🔗 🔗
MobileNet augmentation (horizontal flips) 0.950 - @苏剑林 🔗
ResNet18 Normalization, random horizontal flip, random vertical flip, random translation, random rotation. 0.949 0.979 Kyriakos Efthymiadis 🔗
GoogleNet with cross-entropy loss None 0.937 - @Cenk Bircanoğlu 🔗
AlexNet with Triplet loss None 0.899 - @Cenk Bircanoğlu 🔗
SqueezeNet with cyclical learning rate 200 epochs None 0.900 - @snakers4 🔗
Dual path network with wide resnet 28-10 standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.957 - @Queequeg 🔗
MLP 256-128-100 None 0.8833 - @heitorrapela 🔗
VGG16 26M parameters None 0.935 - @QuantumLiu 🔗 🔗
WRN-28-10 standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.959 - @zhunzhong07 🔗
WRN-28-10 + Random Erasing standard preprocessing (mean/std subtraction/division) and augmentation (random crops/horizontal flips) 0.963 - @zhunzhong07 🔗
Human Performance Crowd-sourced evaluation of human (with no fashion expertise) performance. 1000 randomly sampled test images, 3 labels per image, majority labelling. 0.835 - Leo -
Capsule Network 8M parameters Normalization and shift at most 2 pixel and horizontal flip 0.936 - @XifengGuo 🔗
HOG+SVM HOG 0.926 - @subalde 🔗
XgBoost scaling the pixel values to mean=0.0 and var=1.0 0.898 0.958 @anktplwl91 🔗
DENSER - 0.953 0.997 @fillassuncao 🔗 🔗
Dyra-Net Rescale to unit interval 0.906 - @Dirk Schäfer 🔗 🔗
Google AutoML 24 compute hours (higher quality) 0.939 - @Sebastian Heinz 🔗
Fastai Resnet50+Fine-tuning+Softmax on last layer's activations 0.9312 - @Sayak 🔗

Other Explorations of Fashion-MNIST

Fashion-MNIST: Year in Review

Fashion-MNIST on Google Scholar

Generative adversarial networks (GANs)

Clustering

Video Tutorial

Machine Learning Meets Fashion by Yufeng G @ Google Cloud

Machine Learning Meets Fashion

Introduction to Kaggle Kernels by Yufeng G @ Google Cloud

Introduction to Kaggle Kernels

动手学深度学习 by Mu Li @ Amazon AI

MXNet/Gluon中文频道

Apache MXNet으로 배워보는 딥러닝(Deep Learning) - 김무현 (AWS 솔루션즈아키텍트)

Apache MXNet으로 배워보는 딥러닝(Deep Learning)

Visualization

t-SNE on Fashion-MNIST (left) and original MNIST (right)

PCA on Fashion-MNIST (left) and original MNIST (right)

UMAP on Fashion-MNIST (left) and original MNIST (right)

PyMDE on Fashion-MNIST (left) and original MNIST (right)

Contributing

Thanks for your interest in contributing! There are many ways to get involved; start with our contributor guidelines and then check these open issues for specific tasks.

Contact

To discuss the dataset, please use Gitter.

Citing Fashion-MNIST

If you use Fashion-MNIST in a scientific publication, we would appreciate references to the following paper:

Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Han Xiao, Kashif Rasul, Roland Vollgraf. arXiv:1708.07747

Biblatex entry:

@online{xiao2017/online,
  author       = {Han Xiao and Kashif Rasul and Roland Vollgraf},
  title        = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
  date         = {2017-08-28},
  year         = {2017},
  eprintclass  = {cs.LG},
  eprinttype   = {arXiv},
  eprint       = {cs.LG/1708.07747},
}

Who is citing Fashion-MNIST?

License

The MIT License (MIT) Copyright © [2017] Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022