Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Overview

Intro

Build Status codecov

Real-time object detection and classification. Paper: version 1, version 2.

Read more about YOLO (in darknet) and download weight files here. In case the weight file cannot be found, I uploaded some of mine here, which include yolo-full and yolo-tiny of v1.0, tiny-yolo-v1.1 of v1.1 and yolo, tiny-yolo-voc of v2.

See demo below or see on this imgur

Dependencies

Python3, tensorflow 1.0, numpy, opencv 3.

Citation

@article{trieu2018darkflow,
  title={Darkflow},
  author={Trieu, Trinh Hoang},
  journal={GitHub Repository. Available online: https://github. com/thtrieu/darkflow (accessed on 14 February 2019)},
  year={2018}
}

Getting started

You can choose one of the following three ways to get started with darkflow.

  1. Just build the Cython extensions in place. NOTE: If installing this way you will have to use ./flow in the cloned darkflow directory instead of flow as darkflow is not installed globally.

    python3 setup.py build_ext --inplace
    
  2. Let pip install darkflow globally in dev mode (still globally accessible, but changes to the code immediately take effect)

    pip install -e .
    
  3. Install with pip globally

    pip install .
    

Update

Android demo on Tensorflow's here

I am looking for help:

  • help wanted labels in issue track

Parsing the annotations

Skip this if you are not training or fine-tuning anything (you simply want to forward flow a trained net)

For example, if you want to work with only 3 classes tvmonitor, person, pottedplant; edit labels.txt as follows

tvmonitor
person
pottedplant

And that's it. darkflow will take care of the rest. You can also set darkflow to load from a custom labels file with the --labels flag (i.e. --labels myOtherLabelsFile.txt). This can be helpful when working with multiple models with different sets of output labels. When this flag is not set, darkflow will load from labels.txt by default (unless you are using one of the recognized .cfg files designed for the COCO or VOC dataset - then the labels file will be ignored and the COCO or VOC labels will be loaded).

Design the net

Skip this if you are working with one of the original configurations since they are already there. Otherwise, see the following example:

...

[convolutional]
batch_normalize = 1
size = 3
stride = 1
pad = 1
activation = leaky

[maxpool]

[connected]
output = 4096
activation = linear

...

Flowing the graph using flow

# Have a look at its options
flow --h

First, let's take a closer look at one of a very useful option --load

# 1. Load tiny-yolo.weights
flow --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights

# 2. To completely initialize a model, leave the --load option
flow --model cfg/yolo-new.cfg

# 3. It is useful to reuse the first identical layers of tiny for `yolo-new`
flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights
# this will print out which layers are reused, which are initialized

All input images from default folder sample_img/ are flowed through the net and predictions are put in sample_img/out/. We can always specify more parameters for such forward passes, such as detection threshold, batch size, images folder, etc.

# Forward all images in sample_img/ using tiny yolo and 100% GPU usage
flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --gpu 1.0

json output can be generated with descriptions of the pixel location of each bounding box and the pixel location. Each prediction is stored in the sample_img/out folder by default. An example json array is shown below.

# Forward all images in sample_img/ using tiny yolo and JSON output.
flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --json

JSON output:

[{"label":"person", "confidence": 0.56, "topleft": {"x": 184, "y": 101}, "bottomright": {"x": 274, "y": 382}},
{"label": "dog", "confidence": 0.32, "topleft": {"x": 71, "y": 263}, "bottomright": {"x": 193, "y": 353}},
{"label": "horse", "confidence": 0.76, "topleft": {"x": 412, "y": 109}, "bottomright": {"x": 592,"y": 337}}]
  • label: self explanatory
  • confidence: somewhere between 0 and 1 (how confident yolo is about that detection)
  • topleft: pixel coordinate of top left corner of box.
  • bottomright: pixel coordinate of bottom right corner of box.

Training new model

Training is simple as you only have to add option --train. Training set and annotation will be parsed if this is the first time a new configuration is trained. To point to training set and annotations, use option --dataset and --annotation. A few examples:

# Initialize yolo-new from yolo-tiny, then train the net on 100% GPU:
flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights --train --gpu 1.0

# Completely initialize yolo-new and train it with ADAM optimizer
flow --model cfg/yolo-new.cfg --train --trainer adam

During training, the script will occasionally save intermediate results into Tensorflow checkpoints, stored in ckpt/. To resume to any checkpoint before performing training/testing, use --load [checkpoint_num] option, if checkpoint_num < 0, darkflow will load the most recent save by parsing ckpt/checkpoint.

# Resume the most recent checkpoint for training
flow --train --model cfg/yolo-new.cfg --load -1

# Test with checkpoint at step 1500
flow --model cfg/yolo-new.cfg --load 1500

# Fine tuning yolo-tiny from the original one
flow --train --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights

Example of training on Pascal VOC 2007:

# Download the Pascal VOC dataset:
curl -O https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar

# An example of the Pascal VOC annotation format:
vim VOCdevkit/VOC2007/Annotations/000001.xml

# Train the net on the Pascal dataset:
flow --model cfg/yolo-new.cfg --train --dataset "~/VOCdevkit/VOC2007/JPEGImages" --annotation "~/VOCdevkit/VOC2007/Annotations"

Training on your own dataset

The steps below assume we want to use tiny YOLO and our dataset has 3 classes

  1. Create a copy of the configuration file tiny-yolo-voc.cfg and rename it according to your preference tiny-yolo-voc-3c.cfg (It is crucial that you leave the original tiny-yolo-voc.cfg file unchanged, see below for explanation).

  2. In tiny-yolo-voc-3c.cfg, change classes in the [region] layer (the last layer) to the number of classes you are going to train for. In our case, classes are set to 3.

    ...
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    bias_match=1
    classes=3
    coords=4
    num=5
    softmax=1
    
    ...
  3. In tiny-yolo-voc-3c.cfg, change filters in the [convolutional] layer (the second to last layer) to num * (classes + 5). In our case, num is 5 and classes are 3 so 5 * (3 + 5) = 40 therefore filters are set to 40.

    ...
    
    [convolutional]
    size=1
    stride=1
    pad=1
    filters=40
    activation=linear
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    
    ...
  4. Change labels.txt to include the label(s) you want to train on (number of labels should be the same as the number of classes you set in tiny-yolo-voc-3c.cfg file). In our case, labels.txt will contain 3 labels.

    label1
    label2
    label3
    
  5. Reference the tiny-yolo-voc-3c.cfg model when you train.

    flow --model cfg/tiny-yolo-voc-3c.cfg --load bin/tiny-yolo-voc.weights --train --annotation train/Annotations --dataset train/Images

  • Why should I leave the original tiny-yolo-voc.cfg file unchanged?

    When darkflow sees you are loading tiny-yolo-voc.weights it will look for tiny-yolo-voc.cfg in your cfg/ folder and compare that configuration file to the new one you have set with --model cfg/tiny-yolo-voc-3c.cfg. In this case, every layer will have the same exact number of weights except for the last two, so it will load the weights into all layers up to the last two because they now contain different number of weights.

Camera/video file demo

For a demo that entirely runs on the CPU:

flow --model cfg/yolo-new.cfg --load bin/yolo-new.weights --demo videofile.avi

For a demo that runs 100% on the GPU:

flow --model cfg/yolo-new.cfg --load bin/yolo-new.weights --demo videofile.avi --gpu 1.0

To use your webcam/camera, simply replace videofile.avi with keyword camera.

To save a video with predicted bounding box, add --saveVideo option.

Using darkflow from another python application

Please note that return_predict(img) must take an numpy.ndarray. Your image must be loaded beforehand and passed to return_predict(img). Passing the file path won't work.

Result from return_predict(img) will be a list of dictionaries representing each detected object's values in the same format as the JSON output listed above.

from darkflow.net.build import TFNet
import cv2

options = {"model": "cfg/yolo.cfg", "load": "bin/yolo.weights", "threshold": 0.1}

tfnet = TFNet(options)

imgcv = cv2.imread("./sample_img/sample_dog.jpg")
result = tfnet.return_predict(imgcv)
print(result)

Save the built graph to a protobuf file (.pb)

## Saving the lastest checkpoint to protobuf file
flow --model cfg/yolo-new.cfg --load -1 --savepb

## Saving graph and weights to protobuf file
flow --model cfg/yolo.cfg --load bin/yolo.weights --savepb

When saving the .pb file, a .meta file will also be generated alongside it. This .meta file is a JSON dump of everything in the meta dictionary that contains information nessecary for post-processing such as anchors and labels. This way, everything you need to make predictions from the graph and do post processing is contained in those two files - no need to have the .cfg or any labels file tagging along.

The created .pb file can be used to migrate the graph to mobile devices (JAVA / C++ / Objective-C++). The name of input tensor and output tensor are respectively 'input' and 'output'. For further usage of this protobuf file, please refer to the official documentation of Tensorflow on C++ API here. To run it on, say, iOS application, simply add the file to Bundle Resources and update the path to this file inside source code.

Also, darkflow supports loading from a .pb and .meta file for generating predictions (instead of loading from a .cfg and checkpoint or .weights).

## Forward images in sample_img for predictions based on protobuf file
flow --pbLoad built_graph/yolo.pb --metaLoad built_graph/yolo.meta --imgdir sample_img/

If you'd like to load a .pb and .meta file when using return_predict() you can set the "pbLoad" and "metaLoad" options in place of the "model" and "load" options you would normally set.

That's all.

Owner
Trieu
Google Brain Resident 2017-2019. Doing research - engineering projects in Machine Learning - Deep Learning.
Trieu
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022