Measuring if attention is explanation with ROAR

Overview

NLP ROAR Interpretability

Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining

Plot of ROAR and Recursive ROAR faithfulness curves

Install

git clone https://github.com/AndreasMadsen/nlp-roar-interpretability.git
cd nlp-roar-interpretability
python -m pip install -e .

Experiments

Tasks

There are scripts for each dataset. Note that some tasks share a dataset. Use this list to identify how to train a model for each task.

  • SST: python experiments/stanford_sentiment.py
  • SNLI: python experiments/stanford_nli.py
  • IMDB: python experiments/imdb.py
  • MIMIC (Diabetes): python experiments/mimic.py --subset diabetes
  • MIMIC (Anemia): python experiments/mimic.py --subset anemia
  • bABI-1: python experiments/babi.py --task 1
  • bABI-2: python experiments/babi.py --task 2
  • bABI-3: python experiments/babi.py --task 3

Parameters

Each of the above scripts stanford_sentiment, stanford_nli, imdb, mimic, and babi take the same set of CLI arguments. You can learn about each argument with --help. The most important arguments which will allow you to run the experiments presented in the paper are:

  • --importance-measure: this specifies which importance measure is used. It can be either random, mutual-information, attention , gradient, or integrated-gradient.
  • --seed: specifies the seed used to initialize the model.
  • --roar-strategy: should ROAR masking be done absoloute (count) or relative (quantile),
  • --k: the proportion of tokens in % to mask if --roar-strategy quantile is used. The number of tokens if --roar-strategy count is used.
  • --recursive: indicates that model to use for computing the importance measure has --k set to --k - --recursive-step-size instead of 0 as used in classic ROAR.

Note, for --k > 0, the reference model must already be trained. For example, in the non-recursive case, this means that a model trained with --k 0 must already available.

Running on a HPC setup

For downloading dataset dependencies we provide a download.sh script.

Additionally, we provide script for submitting all jobs to a Slurm queue, in batch_jobs/. Note again, that the ROAR script assume there are checkpoints for the baseline --k 0 models.

The jobs automatically use $SCRATCH/nlproar as the presistent dir.

MIMIC

See https://mimic.physionet.org/gettingstarted/access/ for how to access MIMIC. You will need to download DIAGNOSES_ICD.csv.gz and NOTEEVENTS.csv.gz and place them in mimic/ relative to your presistent dir.

Owner
Andreas Madsen
Researching interpretability for Machine Learning because society needs it.
Andreas Madsen
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
šŸ•µ Artificial Intelligence for social control of public administration

Non-tech crash course into OperaĆ§Ć£o Serenata de Amor Tech crash course into OperaĆ§Ć£o Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Pytorch implementation of ā€œRecursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinementā€

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022