Measuring if attention is explanation with ROAR

Overview

NLP ROAR Interpretability

Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining

Plot of ROAR and Recursive ROAR faithfulness curves

Install

git clone https://github.com/AndreasMadsen/nlp-roar-interpretability.git
cd nlp-roar-interpretability
python -m pip install -e .

Experiments

Tasks

There are scripts for each dataset. Note that some tasks share a dataset. Use this list to identify how to train a model for each task.

  • SST: python experiments/stanford_sentiment.py
  • SNLI: python experiments/stanford_nli.py
  • IMDB: python experiments/imdb.py
  • MIMIC (Diabetes): python experiments/mimic.py --subset diabetes
  • MIMIC (Anemia): python experiments/mimic.py --subset anemia
  • bABI-1: python experiments/babi.py --task 1
  • bABI-2: python experiments/babi.py --task 2
  • bABI-3: python experiments/babi.py --task 3

Parameters

Each of the above scripts stanford_sentiment, stanford_nli, imdb, mimic, and babi take the same set of CLI arguments. You can learn about each argument with --help. The most important arguments which will allow you to run the experiments presented in the paper are:

  • --importance-measure: this specifies which importance measure is used. It can be either random, mutual-information, attention , gradient, or integrated-gradient.
  • --seed: specifies the seed used to initialize the model.
  • --roar-strategy: should ROAR masking be done absoloute (count) or relative (quantile),
  • --k: the proportion of tokens in % to mask if --roar-strategy quantile is used. The number of tokens if --roar-strategy count is used.
  • --recursive: indicates that model to use for computing the importance measure has --k set to --k - --recursive-step-size instead of 0 as used in classic ROAR.

Note, for --k > 0, the reference model must already be trained. For example, in the non-recursive case, this means that a model trained with --k 0 must already available.

Running on a HPC setup

For downloading dataset dependencies we provide a download.sh script.

Additionally, we provide script for submitting all jobs to a Slurm queue, in batch_jobs/. Note again, that the ROAR script assume there are checkpoints for the baseline --k 0 models.

The jobs automatically use $SCRATCH/nlproar as the presistent dir.

MIMIC

See https://mimic.physionet.org/gettingstarted/access/ for how to access MIMIC. You will need to download DIAGNOSES_ICD.csv.gz and NOTEEVENTS.csv.gz and place them in mimic/ relative to your presistent dir.

Owner
Andreas Madsen
Researching interpretability for Machine Learning because society needs it.
Andreas Madsen
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022