Measuring if attention is explanation with ROAR

Overview

NLP ROAR Interpretability

Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining

Plot of ROAR and Recursive ROAR faithfulness curves

Install

git clone https://github.com/AndreasMadsen/nlp-roar-interpretability.git
cd nlp-roar-interpretability
python -m pip install -e .

Experiments

Tasks

There are scripts for each dataset. Note that some tasks share a dataset. Use this list to identify how to train a model for each task.

  • SST: python experiments/stanford_sentiment.py
  • SNLI: python experiments/stanford_nli.py
  • IMDB: python experiments/imdb.py
  • MIMIC (Diabetes): python experiments/mimic.py --subset diabetes
  • MIMIC (Anemia): python experiments/mimic.py --subset anemia
  • bABI-1: python experiments/babi.py --task 1
  • bABI-2: python experiments/babi.py --task 2
  • bABI-3: python experiments/babi.py --task 3

Parameters

Each of the above scripts stanford_sentiment, stanford_nli, imdb, mimic, and babi take the same set of CLI arguments. You can learn about each argument with --help. The most important arguments which will allow you to run the experiments presented in the paper are:

  • --importance-measure: this specifies which importance measure is used. It can be either random, mutual-information, attention , gradient, or integrated-gradient.
  • --seed: specifies the seed used to initialize the model.
  • --roar-strategy: should ROAR masking be done absoloute (count) or relative (quantile),
  • --k: the proportion of tokens in % to mask if --roar-strategy quantile is used. The number of tokens if --roar-strategy count is used.
  • --recursive: indicates that model to use for computing the importance measure has --k set to --k - --recursive-step-size instead of 0 as used in classic ROAR.

Note, for --k > 0, the reference model must already be trained. For example, in the non-recursive case, this means that a model trained with --k 0 must already available.

Running on a HPC setup

For downloading dataset dependencies we provide a download.sh script.

Additionally, we provide script for submitting all jobs to a Slurm queue, in batch_jobs/. Note again, that the ROAR script assume there are checkpoints for the baseline --k 0 models.

The jobs automatically use $SCRATCH/nlproar as the presistent dir.

MIMIC

See https://mimic.physionet.org/gettingstarted/access/ for how to access MIMIC. You will need to download DIAGNOSES_ICD.csv.gz and NOTEEVENTS.csv.gz and place them in mimic/ relative to your presistent dir.

Owner
Andreas Madsen
Researching interpretability for Machine Learning because society needs it.
Andreas Madsen
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022