A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Related tags

Deep Learningmugs
Overview

Mugs: A Multi-Granular Self-Supervised Learning Framework

This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework". arXiv

PWC

Overall framework of Mugs.

Fig 1. Overall framework of Mugs. In (a), for each image, two random crops of one image are fed into backbones of student and teacher. Three granular supervisions: 1) instance discrimination supervision, 2) local-group discrimination supervision, and 3) group discrimination supervision, are adopted to learn multi-granular representation. In (b), local-group modules in student/teacher averages all patch tokens, and finds top-k neighbors from memory buffer to aggregate them with the average for obtaining a local-group feature.

Pretrained models on ImageNet-1K

You can choose to download only the weights of the pretrained backbone used for downstream tasks, or the full checkpoint which contains backbone and projection head weights for both student and teacher networks.

Table 1. KNN and linear probing performance with their corresponding hyper-parameters, logs and model weights.

arch params pretraining epochs k-nn linear download
ViT-S/16 21M 100 72.3% 76.4% backbone only full ckpt args logs eval logs
ViT-S/16 21M 300 74.8% 78.2% backbone only full ckpt args logs eval logs
ViT-S/16 21M 800 75.6% 78.9% backbone only full ckpt args logs eval logs
ViT-B/16 85M 400 78.0% 80.6% backbone only full ckpt args logs eval logs
ViT-L/16 307M 250 80.3% 82.1% backbone only full ckpt args logs eval logs
Comparison of linear probing accuracy on ImageNet-1K.

Fig 2. Comparison of linear probing accuracy on ImageNet-1K.

Pretraining Settings

Environment

For reproducing, please install PyTorch and download the ImageNet dataset. This codebase has been developed with python version 3.8, PyTorch version 1.7.1, CUDA 11.0 and torchvision 0.8.2. For the full environment, please refer to our Dockerfile file.

ViT pretraining 🍺

To pretraining each model, please find the exact hyper-parameter settings at the args column of Table 1. For training log and linear probing log, please refer to the log and eval logs column of Table 1.

ViT-Small pretraining:

To run ViT-small for 100 epochs, we use two nodes of total 8 A100 GPUs (total 512 minibatch size) by using following command:

python -m torch.distributed.launch --nproc_per_node=8 main.py --data_path DATASET_ROOT --output_dir OUTPUT_ROOT --arch vit_small 
--group_teacher_temp 0.04 --group_warmup_teacher_temp_epochs 0 --weight_decay_end 0.2 --norm_last_layer false --epochs 100

To run ViT-small for 300 epochs, we use two nodes of total 16 A100 GPUs (total 1024 minibatch size) by using following command:

python -m torch.distributed.launch --nproc_per_node=16 main.py --data_path DATASET_ROOT --output_dir OUTPUT_ROOT --arch vit_small 
--group_teacher_temp 0.07 --group_warmup_teacher_temp_epochs 30 --weight_decay_end 0.1 --norm_last_layer false --epochs 300

To run ViT-small for 800 epochs, we use two nodes of total 16 A100 GPUs (total 1024 minibatch size) by using following command:

python -m torch.distributed.launch --nproc_per_node=16 main.py --data_path DATASET_ROOT --output_dir OUTPUT_ROOT --arch vit_small 
--group_teacher_temp 0.07 --group_warmup_teacher_temp_epochs 30 --weight_decay_end 0.1 --norm_last_layer false --epochs 800

ViT-Base pretraining:

To run ViT-base for 400 epochs, we use two nodes of total 24 A100 GPUs (total 1024 minibatch size) by using following command:

python -m torch.distributed.launch --nproc_per_node=24 main.py --data_path DATASET_ROOT --output_dir OUTPUT_ROOT --arch vit_base 
--group_teacher_temp 0.07 --group_warmup_teacher_temp_epochs 50 --min_lr 2e-06 --weight_decay_end 0.1 --freeze_last_layer 3 --norm_last_layer 
false --epochs 400

ViT-Large pretraining:

To run ViT-large for 250 epochs, we use two nodes of total 40 A100 GPUs (total 640 minibatch size) by using following command:

python -m torch.distributed.launch --nproc_per_node=40 main.py --data_path DATASET_ROOT --output_dir OUTPUT_ROOT --arch vit_large 
--lr 0.0015 --min_lr 1.5e-4 --group_teacher_temp 0.07 --group_warmup_teacher_temp_epochs 50 --weight_decay 0.025 
--weight_decay_end 0.08 --norm_last_layer true --drop_path_rate 0.3 --freeze_last_layer 3 --epochs 250

Evaluation

We are cleaning up the evalutation code and will release them when they are ready.

Self-attention visualization

Here we provide the self-attention map of the [CLS] token on the heads of the last layer

Self-attention from a ViT-Base/16 trained with Mugs

Fig 3. Self-attention from a ViT-Base/16 trained with Mugs.

T-SNE visualization

Here we provide the T-SNE visualization of the learned feature by ViT-B/16. We show the fish classes in ImageNet-1K, i.e., the first six classes, including tench, goldfish, white shark, tiger shark, hammerhead, electric ray. See more examples in Appendix.

T-SNE visualization of the learned feature by ViT-B/16.

Fig 4. T-SNE visualization of the learned feature by ViT-B/16.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citation

If you find this repository useful, please consider giving a star and citation 🍺 :

@inproceedings{mugs2022SSL,
  title={Mugs: A Multi-Granular Self-Supervised Learning Framework},
  author={Pan Zhou and Yichen Zhou and Chenyang Si and Weihao Yu and Teck Khim Ng and Shuicheng Yan},
  booktitle={arXiv preprint arXiv:2203.14415},
  year={2022}
}
Owner
Sea AI Lab
Sea AI Lab
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022