[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Overview

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Project Page | Paper | Supplemental material #1 | Supplemental material #2 | Presentation Video

Hyunho Ha ([email protected]), Joo Ho Lee ([email protected]), Andreas Meuleman ([email protected]) and Min H. Kim ([email protected])

Institute: KAIST Visual Computing Laboratory

If you use our code for your academic work, please cite our paper:

@InProceedings{Ha_2021_CVPR,
	author = {Hyunho Ha and Joo Ho Lee and Andreas Meuleman and Min H. Kim},
	title = {NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning},
	booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	month = {June},
	year = {2021}
}

Installation

Our implementation is based on the voxel hashing (https://github.com/niessner/VoxelHashing) and TextureFusion repository (https://github.com/KAIST-VCLAB/texturefusion).

To run our code, first obtain the entire source codes from voxel hashing repository, including the Visual Studio project file. Then, in VoxelHashing/DepthSensingCUDA/, replace the folders Source/ and Shaders/ as well as the configuration files zParameters*.txt by the content of our repository. Therefore, our source code inherits the dependency of the Voxel Hashing project as follows.

Our work requires:

Our code has been developed with Microsoft Visual Studio 2013 (VC++ 12) and Windows 10 (10.0.19041, build 19041) on a machine equipped with Intel i9-10920X (RAM: 64GB), NVIDIA TITAN RTX (RAM: 24GB). The main function is in normalFusion_main.cpp.

Data

We provide the "fountain" dataset (originally created by Zhou and Koltun) compatible with our implementation (link: http://vclab.kaist.ac.kr/cvpr2020p1/fountain_all.zip).

Usage

Our program reads parameters from three files and you can change the program setting by changing them.

  • zParametersDefault.txt

  • zParametersTrackingDefault.txt

  • zParametersWarpingDefault.txt

  • zParametersEnhancementDefault.txt

You can run our program with the provided fountain dataset.

Please set s_sensorIdx as 9 and s_binaryDumpSensorFile[0] as the fountain folder in zParametersDefault.txt.

Our program produces mesh with two textures (diffuse albedo and normal). If you want to further enhance mesh using normal texture, please refer to the paper: "Efficiently Combining Positions and Normals for Precise 3D Geometry", Nehab et al., ACM TOG, 2005.

License

Hyunho Ha, Joo Ho Lee, Andreas Meuleman, and Min H. Kim have developed this software and related documentation (the "Software"); confidential use in source form of the Software, without modification, is permitted provided that the following conditions are met:

Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from the Software without specific prior written permission.

The use of the software is for Non-Commercial Purposes only. As used in this Agreement, "Non-Commercial Purpose" means for the purpose of education or research in a non-commercial organisation only. "Non-Commercial Purpose" excludes, without limitation, any use of the Software for, as part of, or in any way in connection with a product (including software) or service which is sold, offered for sale, licensed, leased, published, loaned or rented. If you require a license for a use excluded by this agreement, please email [[email protected]].

Warranty: KAIST-VCLAB MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. KAIST-VCLAB SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

Note that Our implementation inherits the original license of "Voxel Hashing" codes (CC BY-NC-SA 3.0).

Please refer to license.txt for more details.

Contact

If you have any questions, please feel free to contact us.

Hyunho Ha ([email protected])

Joo Ho Lee ([email protected])

Andreas Meuleman ([email protected])

Min H. Kim ([email protected])

Owner
KAIST VCLAB
KAIST Visual Computing Laboratory
KAIST VCLAB
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Akshat Surolia 2 May 11, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022