[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Overview

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Project Page | Paper | Supplemental material #1 | Supplemental material #2 | Presentation Video

Hyunho Ha ([email protected]), Joo Ho Lee ([email protected]), Andreas Meuleman ([email protected]) and Min H. Kim ([email protected])

Institute: KAIST Visual Computing Laboratory

If you use our code for your academic work, please cite our paper:

@InProceedings{Ha_2021_CVPR,
	author = {Hyunho Ha and Joo Ho Lee and Andreas Meuleman and Min H. Kim},
	title = {NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning},
	booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	month = {June},
	year = {2021}
}

Installation

Our implementation is based on the voxel hashing (https://github.com/niessner/VoxelHashing) and TextureFusion repository (https://github.com/KAIST-VCLAB/texturefusion).

To run our code, first obtain the entire source codes from voxel hashing repository, including the Visual Studio project file. Then, in VoxelHashing/DepthSensingCUDA/, replace the folders Source/ and Shaders/ as well as the configuration files zParameters*.txt by the content of our repository. Therefore, our source code inherits the dependency of the Voxel Hashing project as follows.

Our work requires:

Our code has been developed with Microsoft Visual Studio 2013 (VC++ 12) and Windows 10 (10.0.19041, build 19041) on a machine equipped with Intel i9-10920X (RAM: 64GB), NVIDIA TITAN RTX (RAM: 24GB). The main function is in normalFusion_main.cpp.

Data

We provide the "fountain" dataset (originally created by Zhou and Koltun) compatible with our implementation (link: http://vclab.kaist.ac.kr/cvpr2020p1/fountain_all.zip).

Usage

Our program reads parameters from three files and you can change the program setting by changing them.

  • zParametersDefault.txt

  • zParametersTrackingDefault.txt

  • zParametersWarpingDefault.txt

  • zParametersEnhancementDefault.txt

You can run our program with the provided fountain dataset.

Please set s_sensorIdx as 9 and s_binaryDumpSensorFile[0] as the fountain folder in zParametersDefault.txt.

Our program produces mesh with two textures (diffuse albedo and normal). If you want to further enhance mesh using normal texture, please refer to the paper: "Efficiently Combining Positions and Normals for Precise 3D Geometry", Nehab et al., ACM TOG, 2005.

License

Hyunho Ha, Joo Ho Lee, Andreas Meuleman, and Min H. Kim have developed this software and related documentation (the "Software"); confidential use in source form of the Software, without modification, is permitted provided that the following conditions are met:

Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from the Software without specific prior written permission.

The use of the software is for Non-Commercial Purposes only. As used in this Agreement, "Non-Commercial Purpose" means for the purpose of education or research in a non-commercial organisation only. "Non-Commercial Purpose" excludes, without limitation, any use of the Software for, as part of, or in any way in connection with a product (including software) or service which is sold, offered for sale, licensed, leased, published, loaned or rented. If you require a license for a use excluded by this agreement, please email [[email protected]].

Warranty: KAIST-VCLAB MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. KAIST-VCLAB SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

Note that Our implementation inherits the original license of "Voxel Hashing" codes (CC BY-NC-SA 3.0).

Please refer to license.txt for more details.

Contact

If you have any questions, please feel free to contact us.

Hyunho Ha ([email protected])

Joo Ho Lee ([email protected])

Andreas Meuleman ([email protected])

Min H. Kim ([email protected])

Owner
KAIST VCLAB
KAIST Visual Computing Laboratory
KAIST VCLAB
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022