A unified framework to jointly model images, text, and human attention traces.

Overview

connect-caption-and-trace

This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attention Traces (CVPR2021).

example results

Requirements

  • Python 3
  • PyTorch 1.5+ (along with torchvision)
  • coco-caption (Remember to follow initialization steps in coco-caption/README.md)

Prepare data

Our experiments cover all four datasets included in Localized Narratives: COCO2017, Flickr30k, Open Images and ADE20k. For each dataset, we need four things: (1) json file containing image info and word tokens. (DATASET_LN.json) (2) h5 file containing caption labels (DATASET_LN_label.h5) (3) The trace labels extracted from Localized Narratives (DATASET_LN_trace_box/) (4) json file for coco-caption evaluation (captions_DATASET_LN_test.json) (5) Image features (with bounding boxes) extracted by a Mask-RCNN pretrained on Visual Genome.

You can download (1--4) from here: (make a folder named data and put (1--3) in it, and put (4) under coco-caption/annotaions/)

To get (5), you can use Detectron2. First, install Detectron2, then follow Prepare COCO-style annotations for Visual Genome (We use the pre-trained Resnet101-C4 model provided there). After that you can utilize tools/extract_feats.py in Detectron2 to extract features. Finally, run scripts/prepare_feats_boxes_from_npz.py in this repo to prepare features and bounding boxes in seperate folders for training.

For COCO dataest you can also directly use the features provided by Peter Anderson here. The performance is almost the same (with around 0.2% difference.)

Training

The dataset can be chosen from the four datasets. The --task can be chosen from trace, caption, c_joint_t and pred_both. The --eval_task can be chosen from trace, caption, and pred_both.

COCO: joint training of controlled caption generation and trace generation (N=2 layers, evaluated on caption generation)

python tools/train.py --language_eval 0 --id transformer_LN_coco  --caption_model transformer --input_json data/coco_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/coco_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/coco_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 2 --task c_joint_t --eval_task caption --dataset_choice=coco

Open image: training of generating caption and trace at the same time (N=1 layers, evaluated on predicting both)

python tools/train.py --language_eval 0 --id transformer_LN_openimg  --caption_model transformer --input_json data/openimg_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/openimg_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/openimg_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 1 --task pred_both --eval_task pred_both --dataset_choice=openimg

Flickr30k: training of controlled caption generation alone (N=1 layer)

python tools/train.py --language_eval 0 --id transformer_LN_flk30k  --caption_model transformer --input_json data/flk30k_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/flk30k_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/flk30k_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 1 --task caption --eval_task caption --dataset_choice=flk30k

ADE20k: training of controlled trace generation alone (N=1 layer)

python tools/train.py --language_eval 0 --id transformer_LN_ade20k  --caption_model transformer --input_json data/ade20k_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/ade20k_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/ade20k_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 1 --task trace --eval_task trace --dataset_choice=ade20k

Evaluating

COCO: joint training of controlled caption generation and trace generation (N=2 layers, evaluated on caption generation)

python tools/train.py --language_eval 1 --id transformer_LN_coco  --caption_model transformer --input_json data/coco_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/coco_LN_label.h5 --batch_size 2 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/coco_LN_trace_box --use_trace_feat 0 --beam_size 5 --val_images_use -1 --num_layers 2 --task c_joint_t --eval_task caption --dataset_choice=coco

COCO: joint training of controlled caption generation and trace generation (N=2 layers, evaluated on trace generation)

python tools/train.py --language_eval 1 --id transformer_LN_coco  --caption_model transformer --input_json data/coco_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/coco_LN_label.h5 --batch_size 30 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/coco_LN_trace_box --use_trace_feat 0 --beam_size 1 --val_images_use -1 --num_layers 2 --task c_joint_t --eval_task trace --dataset_choice=coco

Open image: training of generating caption and trace at the same time (N=1 layers, evaluated on predicting both)

python tools/train.py --language_eval 1 --id transformer_LN_openimg  --caption_model transformer --input_json data/openimg_LN.json --input_att_dir Dir_to_image_features_vg --input_box_dir Dir_to_bounding_boxes_vg --input_label_h5 data/openimg_LN_label.h5 --batch_size 2 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 100 --learning_rate_decay_every 3  --save_checkpoint_every 1000 --max_epochs 30 --max_length 225 --seq_per_img 1 --use_box 1   --use_trace 1  --input_trace_dir data/openimg_LN_trace_box --use_trace_feat 0 --beam_size 5 --val_images_use -1 --num_layers 1 --task pred_both --eval_task pred_both --dataset_choice=openimg

Acknowledgements

Some components of this repo were built from Ruotian Luo's ImageCaptioning.pytorch.

Owner
Meta Research
Meta Research
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021