Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview

Overview

This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann. CVPR 2020.

Most recent 6D pose estimation frameworks first rely on a deep network to establish correspondences between 3D object keypoints and 2D image locations and then use a variant of a RANSAC-based Perspective-n-Point (PnP) algorithm. This two-stage process, however, is suboptimal: First, it is not end-to-end trainable. Second, training the deep network relies on a surrogate loss that does not directly reflect the final 6D pose estimation task.

In this work, we introduce a deep architecture that directly regresses 6D poses from correspondences. It takes as input a group of candidate correspondences for each 3D keypoint and accounts for the fact that the order of the correspondences within each group is irrelevant, while the order of the groups, that is, of the 3D keypoints, is fixed. Our architecture is generic and can thus be exploited in conjunction with existing correspondence-extraction networks so as to yield single-stage 6D pose estimation frameworks. Our experiments demonstrate that these single-stage frameworks consistently outperform their two-stage counterparts in terms of both accuracy and speed.

Figure 1: Motivation. Consider the modern 6D pose estimation algorithm of SegDrivenPose that uses a deep network to predict several 2D correspondences for each of the eight 3D corners of the pitcher's bounding box. (a) Because it minimizes the average 2D error of these correspondences, two instances of such a framework could produce correspondences that differ but have the same average accuracy, such as the green and the red ones. As evidenced by the projected green and red reference frames, applying a RANSAC-based PnP algorithm to these two sets of correspondences can yield substantially different poses. (b) Even when using only the set of green correspondences, simply changing their order causes a RANSAC-based PnP algorithm to return different solutions.

Figure 2: Overall architecture for single-stage 6D object pose estimation. After establishing 3D-to-2D correspondences by some segmentation-driven CNN for 6D pose, we use three main modules to infer the pose from these correspondence clusters directly: a local feature extraction module with shared network parameters, a feature aggregation module operating within the different clusters, and a global inference module consisting of simple fully-connected layers to estimate the final pose as a quaternion and a translation. The color in the CNN outputs indicates the direction of the 2D offset from the grid cell center to the corresponding projected 3D bounding box corner.

How to Use

This repository contains the code for the core network inferring pose from correspondences. It is straightforward to merge with other correspondence-extraction networks SegDrivenPose or PVNet to obtain an end-to-end 6D pose framework.

Citing

@inproceedings{hu2020singlestagepose,
  title={Single-Stage 6D Object Pose Estimation},
  author={Yinlin Hu and Pascal Fua and Wei Wang and Mathieu Salzmann},
  booktitle={CVPR},
  year={2020}
}
Owner
CVLAB @ EPFL
CVLAB @ EPFL
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022