YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

Overview

YOLOv5-Paddle

YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle

Readme Card

  • 支持AutoBatch
  • 支持AutoAnchor
  • 支持GPU Memory

快速开始

使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePaddle2.2.0-gpu version)

需要安装额外模块

pip install gputil==1.4.0
pip install pycocotools
COCO数据集

数据集已挂载至aistudio项目中,如果需要本地训练可以从这里下载数据集,和标签文件

Data
|-- coco
|   |-- annotions
|   |-- images
|      |-- train2017
|      |-- val2017
|      |-- test2017
|   |-- labels
|      |-- train2017
|      |-- val2017
|      |-- train2017.cache(初始解压可删除,训练时会自动生成)
|      |-- val2017.cache(初始解压可删除,训练时会自动生成)
|   |-- test-dev2017.txt
|   |-- val2017.txt
|   |-- train2017.txt
`   `-- validation

修改data/coco.yaml配置自己的coco路径,你可能需要修改path变量

path: /home/aistudio/Data/coco  # dataset root dir

训练

  • 考虑到AIStudio对于github的访问速度,预先提供了Arial.ttf

  • AIStudio后端不支持绘图,部分可视乎在AIStudio仓库被注释

training scratch for coco

mkdir /home/aistudio/.config/QuanhaoGuo/
cp /home/aistudio/Arial.ttf /home/aistudio/.config/QuanhaoGuo/
cd YOLOv5-Paddle
python train.py --img 896 --batch 8 --epochs 300 --data ./data/coco.yaml --cfg yolov5s.yaml --weights ''

验证

python val.py --img 640  --data ./data/coco.yaml --weights ./weights/yolov5s.pdparams --cfg yolov5s.yaml

通过--task [val/test]控制验证集和测试集

所有提供的模型验证精度如下,本仓库的所有资源文件包括预训练模型均可在百度云盘下载code:dng9

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
params
(M)
FLOPs
@640 (B)
mAPtest
0.5:0.95
mAPtest
0.5
YOLOv5n 640 28.4 46.5 1.9 4.5 28.1 46.2
YOLOv5s 640 37.2 56.4 7.2 16.5 37.1 56.1
YOLOv5m 640 45.1 64.2 21.2 49.0 45.4 64.3
YOLOv5l 640 48.6 67.4 46.5 109.1 48.9 67.5
YOLOv5x 640 50.6 69.1 86.7 205.7 0.507 0.690
YOLOv5n6 1280 34.0 51.1 3.2 4.6 34.3 51.7
YOLOv5s6 1280 44.5 63.4 16.8 12.6 44.3 63.0
YOLOv5m6 1280 50.9 69.4 35.7 50.0 51.1 69.5
YOLOv5l6 1280 53.5 71.8 76.8 111.4 53.7 71.8
YOLOv5x6
+ [TTA][TTA]
1280
1536
54.6
55.2
72.6
73.0
140.7
-
209.8
-
55.0
55.8
73.0
73.5

使用本地环境快速构建YOLOv5训练(PaddlePaddle2.2.0-gpu version)

git clone https://github.com/GuoQuanhao/YOLOv5-Paddle

然后按照使用AIStudio高性能环境快速构建YOLOv5训练执行

训练Custom Data

这里以一个类别的光栅数据集为例,数据集已上传至AIStudio

其组织结构如下:

Data
|-- guangshan
|   |-- images
|      |-- train
|      |-- val
|   |-- labels
|      |-- train
|      |-- val
|   |-- val.txt
|   |-- train.txt

另外你需要构建data/guangshan.yaml,相关文件已放入相关目录,主要用于指定数据集读取路径和模型配置。

# YOLOv5 reproduction 🚀 by GuoQuanhao

train: /home/aistudio/guangshan/images/train  # 118287 images
val: /home/aistudio/guangshan/images/val  # 5000 images
# number of classes
nc: 1
# class names
names: ['spectrum']

训练

python train.py --img 640 --batch 16 --epochs 100 --data ./data/guangshan.yaml --cfg yolov5s.yaml --weights ./weights/yolov5s.pdparams
Starting training for 100 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
      0/99     4.19G    0.1039   0.04733         0        29       640: 100%|████████████████████████████████████████████████████████████████████| 9/9 [01:43<00:00, 11.50s/it]
               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100%|████████████████████████████████████████████████████| 1/1 [00:06<00:00,  6.64s/it]
                 all         16         29      0.266      0.379      0.226     0.0468

     Epoch   gpu_mem       box       obj       cls    labels  img_size
      1/99     4.41G   0.08177    0.0289         0        37       640: 100%|████████████████████████████████████████████████████████████████████| 9/9 [01:40<00:00, 11.20s/it]
               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100%|████████████████████████████████████████████████████| 1/1 [00:05<00:00,  5.49s/it]
                 all         16         29      0.462      0.445      0.398      0.109
......

完整的训练日志存在data/training.txt

利用VisualDL可视化训练过程

visualdl --logdir ./runs/train/exp

验证

python val.py --img 640  --data ./data/guangshan.yaml --cfg yolov5s.yaml --weights ./runs/train/exp/weights/best.pdparams

推理

python detect.py --weights ./runs/train/exp/weights/best.pdparams --cfg yolov5s.yaml --data ./data/guangshan.yaml --source ./data/images/guangshan.jpg

TODO

  • Multi-GPU Training ☘️
  • PaddleLite inference 🌟
  • Model to ONNX

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
github Deep Hao的github
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
You might also like...
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

Drone detection using YOLOv5
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Add gui for YoloV5 using PyQt5
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

A program to recognize fruits on pictures or videos using yolov5
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

Comments
  • train相关问题

    train相关问题

    作者您好,我在使用您的数据集训练YOLOv5n模型时,出现一个警告: Epoch gpu_mem box obj cls labels img_size 1/99 1.94G 0.09787 0.5162 0 679 640: 100%|███████████████████████████████████████████████████████████████████████| 57/57 [04:48<00:00, 5.05s/it] Class Images Labels P R [email protected] [email protected]:.95: 25%|██████████████▎ | 1/4 [00:17<00:53, 17.96s/it]/mnt/YOLOv5-Paddle-main/utils/loss.py:191: RuntimeWarning: divide by zero encountered in true_divide j = np.maximum(r, 1 / r).max(2) < self.hyp['anchor_t'] # compare Class Images Labels P R [email protected] [email protected]:.95: 100%|█████████████████████████████████████████████████████████| 4/4 [00:50<00:00, 12.56s/it] all 50 7742 0.571 0.664 0.579 0.188

    训练集为450,验证集为50,训练的目标只有一类“钢筋” (label: rebar) 想问一下会影响后续的部署使用吗?

    opened by qiujianchen 0
  • resume掉精度问题该怎么解决呢?

    resume掉精度问题该怎么解决呢?

    您好,我在使用您的代码时发现--resume时精度会下降,并且可能需要训练一些epoch才能恢复到之前的精度,请问该如何做才能做到resume时不掉精度呢(因为AIstudio的GPU每天只有8点算力卡,我所使用的数据集训练一个epoch需要一个小时,只能通过resume来完成整个训练过程) image

    图中的第一个39-45是直接resume的结果

    图中的第二个39-48是我认为之前训练时x['learning_rate']和x['momentum']存在,所以尝试在训练开始前给它们赋上warmup结束时的值,但发现效果并未达到预期 for j, x in enumerate(optimizer._param_groups): x['learning_rate'] = np.interp(nw, [0, nw], [hyp['warmup_bias_lr'] if j == 2 else 0.0, scheduler.base_lr * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(nw, [0, nw], [hyp['warmup_momentum'], hyp['momentum']])

    希望能得到您的帮助,谢谢!

    opened by diaoa1900 0
  • ai studio绘图问题

    ai studio绘图问题

    对比了yolov5的源码,绘图部分应该不是ai studio不支持的原因,而是在metrics.py的plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=())函数中,for i, y in enumerate(py.t())编写错误,修改为for i, y in enumerate(py.T)后可以正确绘制PR图

    opened by misaka-network10032 0
Owner
QuanHao Guo
Master at UESTC
QuanHao Guo
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Özlem Taşkın 0 Feb 23, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022