Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

Related tags

Deep LearningLMPBT
Overview

LMPBT

Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

  1. Specification of dependencies Pytorch 1.7.1 torchvision 0.8.2 Scikit-learn 0.22 PyHessian (See, https://github.com/amirgholami/PyHessian.) pip install torch==1.7.1 torchvision==0.8.2 pip install pyhessian pip install scikit-learn

  2. Dataset MNIST, FASHION-MNIS, CIFAR-10, CIFAR-100, and SVHN : downloaded from torchvision.datasets CelebA : http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

  3. Training code We refer to the following code for model training : VAE : https://github.com/XavierXiao/Likelihood-Regret

To train the VAEs, use appropriate arguments and run this command: python train_vae.py

We refer to the following code for computing the low-rank-approximation of Hessian : https://github.com/amirgholami/PyHessian

To compute the top eigenvalues and eigenvectors of VAE models, run this command: python get_eig_vecs_vae.py

  1. Evaluation code To comput the LMPBT-scores using the VAE models, run this command: python get_lmpbt_score.py

  2. We provided the LMPBT socres of a VAE trained on CIFAR-100 and tested on CIFAR-100 as an in-distribution dataset, SVHN and CelebA as an OOD dataset. To comput the OOD performance metrics (AUROC, AUPR and FPR80) of these experiments, run this command: python get_metrics.py

  3. Pre-trained models We provided the pretrained VAE, trained on CIFAR-100.

The model can be loaded using the following code.

parser.add_argument('--state_E', default='./models/cifar100_netE.pth', help='path to encoder checkpoint')

parser.add_argument('--state_G', default='./models/cifar100_netG.pth', help='path to encoder checkpoint')

netG = DVAE.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu)

state_G = torch.load(opt.state_G, map_location=device)

netG.load_state_dict(state_G)

netE = DVAE.Encoder(opt.imageSize, nz, nc, ngf, ngpu)

state_E = torch.load(opt.state_E, map_location=device)

netE.load_state_dict(state_E)

Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023