🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

Overview

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

This year's first semester Club Info challenge will put you at the head of a car racing team. You will participate to the world's most famous racing contest, the INGI Dakar. Your goal is to build the best car, and to beat your opponents by reaching the furthest distance from the starting line.

Challenge statement

Each group will be put in charge of a car racing team. Ultimately, your goal is to reach the furthest distance from the starting line, with any of your cars. For this, you will have 6 generations of 20 cars. Each generation will be produced based on the previous one. Your job is thus to implement the algorithm that takes the previous generation of cars in argument, and that produces the next generation. Such an algorithm is called a genetic algorithm, for which a theoretical background is given hereafter.

Genetic algorithms

Genetic algorithms (GA) are inspired by the process of natural selection. They are used to resolve complex problems. They use operators such as mutation, crossover and selection. GA process is split into generations. Each generation is composed of a finite number of individuals which are built from the best individuals of the last generation and one or several operators. The first generation is generally randomly created.

Genetic algorithms are used for a large variety of problems from antenna shape optimization to minimize the weight of structures embarked in mars rovers.

A genetic algorithm is based on three operators:

  • Mutation, a mutation is a random modification of a parameter for an individual in the generation,
  • Crossover, a crossover is the creation of an individual based on parameters values from several members of the last generation,
  • Selection, in a genetic algorithm, we select the best individuals of a generation to construct the next generation.

Alternative text describing the image

The Mutation operator is used to ensure that the selection is not trapped in a local optima and can not reach the global optima for each parameters.

Some useful links:

Program specifications

The program for the INGI Dakar 2K21 is composed of 7 Python modules:

  • Car.py: Defines the class Car that represents a car of the game. A Car is composed of two Wheels and a Chassis, where the Wheels are located on two of the four Chassis vertices.
  • Chassis.py: Defines the class Chassis that represents a car chassis. A Chassis is represented by four vertices connected with each other in a quadrilateral shape.
  • CustomFormatter.py: Used for logging purposes.
  • Game.py: Defines the class Game that represents a game of INGI Dakar 2K21, i.e. the simulation of the 6 generations of 20 cars.
  • main.py: Entry point of INGI Dakar 2K21, which launches the simulations and computes the score.
  • Terrain.py: Defines the class Terrain that represents the terrain on which the cars are driving.
  • Wheel.py: Defines the class Wheel that represents a car's wheel. A Wheel is defined by its radius and the fact that it is a motor wheel or not.

To participate to the challenge, you only have to modify the function next_generation in the module main.py, that takes a representation of the game world (a b2World object) and the previous generation of cars (a list of Car objects) as arguments, and that returns the next generation of cars (also a list of Car objects). The car features that you can update for the next generation are given below.

Car features

A car is composed of the following (the numbers in bold cannot be changed):

  • TWO wheels, one of which is a motor wheel
  • A chassis, composed by FOUR vertices, linked together to form a polygon shape.

The car features that you can modify to reach the maximum distance are the following:

  • Radius of the two wheels, separately.
  • Which wheel is the motor wheel.
  • Position of the four vertices of the chassis.
  • To which of the chassis' vertices the two wheels are attached.

Please consult the corresponding classes to understand how those features are expressed and used in the program.

Score computation

To start the simulation of the challenge, just run the python3 main.py Python module. You must also activate the python virtual environment with source penv/bin/activate.

The execution of the challenge, and computation of your final score, is as follows:

  • Each generation contains 20 cars. The maximum distance reached by any of the cars is recorded as the score of this generation.
  • A game is composed of 6 generations. The score of a game is the maximum score among all the generations.
  • To smoothen the results, 5 games are launched after each other. Your final score is the average of the different score you obtained during the games.

At the end of the 5 games, a plot will be shown, with your results for the 5 games.

Installation and execution

Installation

To install the project, first clone the repository with the following command:

git clone https://github.com/ClubINFO-INGI-UCLouvain/INGI-Dakar-2K21-Challenge.git

Then, install the needed libraries by running the install.sh script, inside the project directory:

python3 -m venv penv;
source  penv/bin/activate;
chmod +x install.sh;
./install.sh;

Execution

To run the challenge simulation, you can simply run the main.py Python module in the src directory, with the following command:

cd src/
python3 main.py [--seed_terrain SEED] [--seed_car SEED] [--no_UI] [--no_plot]

The command line arguments, all optional, are the following:

  • --seed_terrain SEED (with SEED an integer): sets the seed for the random generation of the game terrain to SEED, for reproducibility of the simulations
  • --seed_car SEED (with SEED an integer): sets the seed for the random generation of the first generation of cars to SEED, for reproducibility of the simulations
  • --no_UI: does not show the graphical interface of the game, which drastically speeds up the simulations
  • --no_plot: does not show the plot of the games' result at the end of all the games

Note that, for the contest, the seeds will be fixed for equity among the groups.

There is also a hidden argument, maybe you can try to find it 😉

Owner
ClubINFO INGI (UCLouvain)
ClubINFO INGI (UCLouvain)
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023