🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

Overview

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

This year's first semester Club Info challenge will put you at the head of a car racing team. You will participate to the world's most famous racing contest, the INGI Dakar. Your goal is to build the best car, and to beat your opponents by reaching the furthest distance from the starting line.

Challenge statement

Each group will be put in charge of a car racing team. Ultimately, your goal is to reach the furthest distance from the starting line, with any of your cars. For this, you will have 6 generations of 20 cars. Each generation will be produced based on the previous one. Your job is thus to implement the algorithm that takes the previous generation of cars in argument, and that produces the next generation. Such an algorithm is called a genetic algorithm, for which a theoretical background is given hereafter.

Genetic algorithms

Genetic algorithms (GA) are inspired by the process of natural selection. They are used to resolve complex problems. They use operators such as mutation, crossover and selection. GA process is split into generations. Each generation is composed of a finite number of individuals which are built from the best individuals of the last generation and one or several operators. The first generation is generally randomly created.

Genetic algorithms are used for a large variety of problems from antenna shape optimization to minimize the weight of structures embarked in mars rovers.

A genetic algorithm is based on three operators:

  • Mutation, a mutation is a random modification of a parameter for an individual in the generation,
  • Crossover, a crossover is the creation of an individual based on parameters values from several members of the last generation,
  • Selection, in a genetic algorithm, we select the best individuals of a generation to construct the next generation.

Alternative text describing the image

The Mutation operator is used to ensure that the selection is not trapped in a local optima and can not reach the global optima for each parameters.

Some useful links:

Program specifications

The program for the INGI Dakar 2K21 is composed of 7 Python modules:

  • Car.py: Defines the class Car that represents a car of the game. A Car is composed of two Wheels and a Chassis, where the Wheels are located on two of the four Chassis vertices.
  • Chassis.py: Defines the class Chassis that represents a car chassis. A Chassis is represented by four vertices connected with each other in a quadrilateral shape.
  • CustomFormatter.py: Used for logging purposes.
  • Game.py: Defines the class Game that represents a game of INGI Dakar 2K21, i.e. the simulation of the 6 generations of 20 cars.
  • main.py: Entry point of INGI Dakar 2K21, which launches the simulations and computes the score.
  • Terrain.py: Defines the class Terrain that represents the terrain on which the cars are driving.
  • Wheel.py: Defines the class Wheel that represents a car's wheel. A Wheel is defined by its radius and the fact that it is a motor wheel or not.

To participate to the challenge, you only have to modify the function next_generation in the module main.py, that takes a representation of the game world (a b2World object) and the previous generation of cars (a list of Car objects) as arguments, and that returns the next generation of cars (also a list of Car objects). The car features that you can update for the next generation are given below.

Car features

A car is composed of the following (the numbers in bold cannot be changed):

  • TWO wheels, one of which is a motor wheel
  • A chassis, composed by FOUR vertices, linked together to form a polygon shape.

The car features that you can modify to reach the maximum distance are the following:

  • Radius of the two wheels, separately.
  • Which wheel is the motor wheel.
  • Position of the four vertices of the chassis.
  • To which of the chassis' vertices the two wheels are attached.

Please consult the corresponding classes to understand how those features are expressed and used in the program.

Score computation

To start the simulation of the challenge, just run the python3 main.py Python module. You must also activate the python virtual environment with source penv/bin/activate.

The execution of the challenge, and computation of your final score, is as follows:

  • Each generation contains 20 cars. The maximum distance reached by any of the cars is recorded as the score of this generation.
  • A game is composed of 6 generations. The score of a game is the maximum score among all the generations.
  • To smoothen the results, 5 games are launched after each other. Your final score is the average of the different score you obtained during the games.

At the end of the 5 games, a plot will be shown, with your results for the 5 games.

Installation and execution

Installation

To install the project, first clone the repository with the following command:

git clone https://github.com/ClubINFO-INGI-UCLouvain/INGI-Dakar-2K21-Challenge.git

Then, install the needed libraries by running the install.sh script, inside the project directory:

python3 -m venv penv;
source  penv/bin/activate;
chmod +x install.sh;
./install.sh;

Execution

To run the challenge simulation, you can simply run the main.py Python module in the src directory, with the following command:

cd src/
python3 main.py [--seed_terrain SEED] [--seed_car SEED] [--no_UI] [--no_plot]

The command line arguments, all optional, are the following:

  • --seed_terrain SEED (with SEED an integer): sets the seed for the random generation of the game terrain to SEED, for reproducibility of the simulations
  • --seed_car SEED (with SEED an integer): sets the seed for the random generation of the first generation of cars to SEED, for reproducibility of the simulations
  • --no_UI: does not show the graphical interface of the game, which drastically speeds up the simulations
  • --no_plot: does not show the plot of the games' result at the end of all the games

Note that, for the contest, the seeds will be fixed for equity among the groups.

There is also a hidden argument, maybe you can try to find it 😉

Owner
ClubINFO INGI (UCLouvain)
ClubINFO INGI (UCLouvain)
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022