Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

Overview

scalableMARL

Scalable Reinforcement Learning Policies for Multi-Agent Control

CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Learning Policies for Multi-Agent Control". IEEE International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021.

Multi-Agent Reinforcement Learning method to learn scalable control polices for multi-agent target tracking.

  • Author: Christopher Hsu
  • Email: [email protected]
  • Affiliation:
    • Department of Electrical and Systems Engineering
    • GRASP Laboratory
    • @ University of Pennsylvania

Currently supports Python3.8 and is developed in Ubuntu 20.04

scalableMARL file structure

Within scalableMARL (highlighting the important files):

scalableMARL
    |___algos
        |___maTT                          #RL alg folder for the target tracking environment
            |___core                      #Self-Attention-based Model Architecture
            |___core_behavior             #Used for further evaluation (Ablation D.2.)
            |___dql                       #Soft Double Q-Learning
            |___evaluation                #Evaluation for Main Results
            |___evaluation_behavior       #Used for further evaluation (Ablation D.2.)
            |___modules                   #Self-Attention blocks
            |___replay_buffer             #RL replay buffer for sets
            |___run_script                #**Main run script to do training and evaluation
    |___envs
        |___maTTenv                       #multi-agent target tracking
            |___env
                |___setTracking_v0        #Standard environment (i.e. 4a4t tasks)
                |___setTracking_vGreedy   #Baseline Greedy Heuristic
                |___setTracking_vGru      #Experiment with Gru (Ablation D.3)
                |___setTracking_vkGreedy  #Experiment with Scalability and Heuristic Mask k=4 (Ablation D.1)
        |___run_ma_tracking               #Example scipt to run environment
    |___setup                             #set PYTHONPATH ($source setup)
  • To setup scalableMARL, follow the instruction below.

Set up python environment for the scalableMARL repository

Install python3.8 (if it is not already installed)

#to check python version
python3 -V

sudo apt-get update
sudo apt-get install python3.8-dev

Set up virtualenv

Python virtual environments are used to isolate package installation from the system

Replace 'virtualenv name' with your choice of folder name

sudo apt-get install python3-venv 

python3 -m venv --system-site-packages ./'virtualenv name'
# Activate the environment for use, any commands now will be done within this venv
source ./'virtualenv name'/bin/activate

# To deactivate (in terminal, exit out of venv), do not use during setup
deactivate

Now that the virtualenv is activated, you can install packages that are isolated from your system

When the venv is activated, you can now install packages and run scripts

Install isolated packages in your venv

sudo apt-get install -y eog python3-tk python3-yaml python3-pip ssh git

#This command will auto install packages from requirements.txt
pip3 install --trusted-host pypi.python.org -r requirements.txt

Current workflow

Setup repos

# activate virtualenv
source ./'virtualenv name'/bin/activate
# change directory to scalableMARL
cd ./scalableMARL
# setup repo  ***important in order to set PYTHONPATH***
source setup

scalableMARL repo is ready to go

Running an algorithm (for example maPredPrey)

# its best to run from the scalableMARL folder so that logging and saving is consistent
cd ./scalableMARL
# run the alg
python3 algos/maTT/run_script.py

# you can run the alg with different argument parameters. See within run_script for more options.
# for example
python3 algos/maTT/run_script.py --seed 0 --logdir ./results/maPredPrey --epochs 40

To test, evaluate, and render()

# for a general example 
python3 algos/maTT/run_script.py --mode test --render 1 --log_dir ./results/maTT/setTracking-v0_123456789/seed_0/ --nb_test_eps 50
# for a saved policy in saved_results
python3 algos/maTT/run_script.py --mode test --render 1 --log_dir ./saved_results/maTT/setTracking-v0_123456789/seed_0/

To see training curves

tensorboard --logdir ./results/maTT/setTracking-v0_123456789/

Citing scalableMARL

If you reference or use scalableMARL in your research, please cite:

@misc{hsu2021scalable,
      title={Scalable Reinforcement Learning Policies for Multi-Agent Control}, 
      author={Christopher D. Hsu and Heejin Jeong and George J. Pappas and Pratik Chaudhari},
      year={2021},
      eprint={2011.08055},
      archivePrefix={arXiv},
      primaryClass={cs.MA}
}

Owner
Christopher Hsu
Christopher Hsu
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick PĂ©rez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022