PyTorch framework for Deep Learning research and development.

Overview

Catalyst logo

Accelerated DL & RL

Build Status CodeFactor Pipi version Docs PyPI Status

Twitter Telegram Slack Github contributors

PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentation and code/ideas reusing. Being able to research/develop something new, rather than write another regular train loop.
Break the cycle - use the Catalyst!

Project manifest. Part of PyTorch Ecosystem. Part of Catalyst Ecosystem:

  • Alchemy - Experiments logging & visualization
  • Catalyst - Accelerated Deep Learning Research and Development
  • Reaction - Convenient Deep Learning models serving

Catalyst at AI Landscape.


Catalyst.Segmentation Build Status Github contributors

Note: this repo uses advanced Catalyst Config API and could be a bit out-of-day right now. Use Catalyst's minimal examples section for a starting point and up-to-day use cases, please.

You will learn how to build image segmentation pipeline with transfer learning using the Catalyst framework.

Goals

  1. Install requirements
  2. Prepare data
  3. Run: raw data → production-ready model
  4. Get results
  5. Customize own pipeline

1. Install requirements

Using local environment:

pip install -r requirements/requirements.txt

Using docker:

This creates a build catalyst-segmentation with the necessary libraries:

make docker-build

2. Get Dataset

Try on open datasets

You can use one of the open datasets

/dev/null mv isbi_cleared_191107 ./data/origin elif [[ "$DATASET" == "voc2012" ]]; then # semantic segmentation # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar tar -xf VOCtrainval_11-May-2012.tar &>/dev/null mkdir -p ./data/origin/images/; mv VOCdevkit/VOC2012/JPEGImages/* $_ mkdir -p ./data/origin/raw_masks; mv VOCdevkit/VOC2012/SegmentationClass/* $_ fi ">
export DATASET="isbi"

rm -rf data/
mkdir -p data

if [[ "$DATASET" == "isbi" ]]; then
    # binary segmentation
    # http://brainiac2.mit.edu/isbi_challenge/
    download-gdrive 1uyPb9WI0t2qMKIqOjFKMv1EtfQ5FAVEI isbi_cleared_191107.tar.gz
    tar -xf isbi_cleared_191107.tar.gz &>/dev/null
    mv isbi_cleared_191107 ./data/origin
elif [[ "$DATASET" == "voc2012" ]]; then
    # semantic segmentation
    # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
    tar -xf VOCtrainval_11-May-2012.tar &>/dev/null
    mkdir -p ./data/origin/images/; mv VOCdevkit/VOC2012/JPEGImages/* $_
    mkdir -p ./data/origin/raw_masks; mv VOCdevkit/VOC2012/SegmentationClass/* $_
fi

Use your own dataset

Prepare your dataset

Data structure

Make sure, that final folder with data has the required structure:

/path/to/your_dataset/
        images/
            image_1
            image_2
            ...
            image_N
        raw_masks/
            mask_1
            mask_2
            ...
            mask_N

Data location

  • The easiest way is to move your data:

    mv /path/to/your_dataset/* /catalyst.segmentation/data/origin

    In that way you can run pipeline with default settings.

  • If you prefer leave data in /path/to/your_dataset/

    • In local environment:

      • Link directory
        ln -s /path/to/your_dataset $(pwd)/data/origin
      • Or just set path to your dataset DATADIR=/path/to/your_dataset when you start the pipeline.
    • Using docker

      You need to set:

         -v /path/to/your_dataset:/data \ #instead default  $(pwd)/data/origin:/data

      in the script below to start the pipeline.

3. Segmentation pipeline

Fast&Furious: raw data → production-ready model

The pipeline will automatically guide you from raw data to the production-ready model.

We will initialize Unet model with a pre-trained ResNet-18 encoder. During current pipeline model will be trained sequentially in two stages.

Binary segmentation pipeline

Run in local environment:

CUDA_VISIBLE_DEVICES=0 \
CUDNN_BENCHMARK="True" \
CUDNN_DETERMINISTIC="True" \
WORKDIR=./logs \
DATADIR=./data/origin \
IMAGE_SIZE=256 \
CONFIG_TEMPLATE=./configs/templates/binary.yml \
NUM_WORKERS=4 \
BATCH_SIZE=256 \
bash ./bin/catalyst-binary-segmentation-pipeline.sh

Run in docker:

export LOGDIR=$(pwd)/logs
docker run -it --rm --shm-size 8G --runtime=nvidia \
   -v $(pwd):/workspace/ \
   -v $LOGDIR:/logdir/ \
   -v $(pwd)/data/origin:/data \
   -e "CUDA_VISIBLE_DEVICES=0" \
   -e "USE_WANDB=1" \
   -e "LOGDIR=/logdir" \
   -e "CUDNN_BENCHMARK='True'" \
   -e "CUDNN_DETERMINISTIC='True'" \
   -e "WORKDIR=/logdir" \
   -e "DATADIR=/data" \
   -e "IMAGE_SIZE=256" \
   -e "CONFIG_TEMPLATE=./configs/templates/binary.yml" \
   -e "NUM_WORKERS=4" \
   -e "BATCH_SIZE=256" \
   catalyst-segmentation ./bin/catalyst-binary-segmentation-pipeline.sh

Semantic segmentation pipeline

Run in local environment:

CUDA_VISIBLE_DEVICES=0 \
CUDNN_BENCHMARK="True" \
CUDNN_DETERMINISTIC="True" \
WORKDIR=./logs \
DATADIR=./data/origin \
IMAGE_SIZE=256 \
CONFIG_TEMPLATE=./configs/templates/semantic.yml \
NUM_WORKERS=4 \
BATCH_SIZE=256 \
bash ./bin/catalyst-semantic-segmentation-pipeline.sh

Run in docker:

export LOGDIR=$(pwd)/logs
docker run -it --rm --shm-size 8G --runtime=nvidia \
   -v $(pwd):/workspace/ \
   -v $LOGDIR:/logdir/ \
   -v $(pwd)/data/origin:/data \
   -e "CUDA_VISIBLE_DEVICES=0" \
   -e "USE_WANDB=1" \
   -e "LOGDIR=/logdir" \
   -e "CUDNN_BENCHMARK='True'" \
   -e "CUDNN_DETERMINISTIC='True'" \
   -e "WORKDIR=/logdir" \
   -e "DATADIR=/data" \
   -e "IMAGE_SIZE=256" \
   -e "CONFIG_TEMPLATE=./configs/templates/semantic.yml" \
   -e "NUM_WORKERS=4" \
   -e "BATCH_SIZE=256" \
   catalyst-segmentation ./bin/catalyst-semantic-segmentation-pipeline.sh

The pipeline is running and you don’t have to do anything else, it remains to wait for the best model!

Visualizations

You can use W&B account for visualisation right after pip install wandb:

wandb: (1) Create a W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results

Tensorboard also can be used for visualisation:

tensorboard --logdir=/catalyst.segmentation/logs

4. Results

All results of all experiments can be found locally in WORKDIR, by default catalyst.segmentation/logs. Results of experiment, for instance catalyst.segmentation/logs/logdir-191107-094627-2f31d790, contain:

checkpoints

  • The directory contains all checkpoints: best, last, also of all stages.
  • best.pth and last.pht can be also found in the corresponding experiment in your W&B account.

configs

  • The directory contains experiment`s configs for reproducibility.

logs

  • The directory contains all logs of experiment.
  • Metrics also logs can be displayed in the corresponding experiment in your W&B account.

code

  • The directory contains code on which calculations were performed. This is necessary for complete reproducibility.

5. Customize own pipeline

For your future experiments framework provides powerful configs allow to optimize configuration of the whole pipeline of segmentation in a controlled and reproducible way.

Configure your experiments

  • Common settings of stages of training and model parameters can be found in catalyst.segmentation/configs/_common.yml.

    • model_params: detailed configuration of models, including:
      • model, for instance ResnetUnet
      • detailed architecture description
      • using pretrained model
    • stages: you can configure training or inference in several stages with different hyperparameters. In our example:
      • optimizer params
      • first learn the head(s), then train the whole network
  • The CONFIG_TEMPLATE with other experiment`s hyperparameters, such as data_params and is here: catalyst.segmentation/configs/templates/binary.yml. The config allows you to define:

    • data_params: path, batch size, num of workers and so on
    • callbacks_params: Callbacks are used to execute code during training, for example, to get metrics or save checkpoints. Catalyst provide wide variety of helpful callbacks also you can use custom.

You can find much more options for configuring experiments in catalyst documentation.

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022