DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

Overview

DeepMetaHandles (CVPR2021 Oral)

[paper] [animations]

DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given shape. The disentangled meta-handles factorize all the plausible deformations of the shape, while each of them corresponds to an intuitive deformation direction. A new deformation can then be generated by the "linear combination" of the meta-handles. Although the approach is learned in an unsupervised manner, the learned meta-handles possess strong interpretability and consistency.

Environment setup

  1. Create a conda environment by conda env create -f environment.yml.
  2. Build and install torch-batch-svd.

Demo

  1. Download data/demo and checkpoints/chair_15.pth from here and place them in the corresponding folder. Pre-processed demo data contains the manifold mesh, sampled control point, sampled surface point cloud, and corresponding biharmonic coordinates.
  2. Run src/demo_target_driven_deform.py to deform a source shape to match a target shape.
  3. Run src/demo_meta_handle.py to generate deformations along the direction of each learned meta-handle.

Train

  1. Download data/chair from here and place them in the corresponding folder.
  2. Run the visdom server. (We use visdom to visualize the training process.)
  3. Run src/train.py to start training.

Note: For different categories, you may need to adjust the number of meta-handles. Also, you need to tune the weights for the loss functions. Different sets of weights may produce significantly different results.

Pre-process your own data

  1. Compile codes in data_preprocessing/.
  2. Build and run manifold to convert your meshes into watertight manifolds.
  3. Run data_preprocessing/normalize_bin to normalize the manifold into a unit bounding sphere.
  4. Build and run fTetWild to convert your manifolds into tetrahedral meshes. Please use --output xxx.mesh option to generate the .mesh format tet mesh. Also, you will get a xxx.mesh__sf.obj for the surface mesh. We will use xxx.mesh and xxx.mesh__sf.obj to calculate the biharmonic weights. We will only deform xxx.mesh__sf.obj later.
  5. Run data_preprocessing/sample_key_points_bin to sample control points from xxx.mesh__sf.obj. We use the FPS algorithm over edge distances to sample the control points.
  6. Run data_preprocessing/calc_weight_bin to calculate the bihrnomic weights. It takes xxx.mesh, xxx.mesh__sf.obj, and the control point file as input, and will output a text file containing the weight matrix for the vertices in xxx.mesh__sf.obj.
  7. Run data_preprocessing/sample_surface_points_bin to sample points on the xxx.mesh__sf.obj and calculate the corresponding biharmonic weights for the sampled point cloud.
  8. In our training, we remove those shapes (about 10%) whose biharmonic weight matrix contains elements that are smaller than -1.5 or greater than 1.5. We find that this can help us to converge faster.
  9. To reduce IO time during training, you may compress the data into a compact form and load them to the memory.

Citation

If you find our work useful, please consider citing our paper:

@article{liu2021deepmetahandles,
  title={DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates},
  author={Liu, Minghua and Sung, Minhyuk and Mech, Radomir and Su, Hao},
  journal={arXiv preprint arXiv:2102.09105},
  year={2021}
}
Owner
Liu Minghua
Liu Minghua
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022