DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

Overview

DeepMetaHandles (CVPR2021 Oral)

[paper] [animations]

DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given shape. The disentangled meta-handles factorize all the plausible deformations of the shape, while each of them corresponds to an intuitive deformation direction. A new deformation can then be generated by the "linear combination" of the meta-handles. Although the approach is learned in an unsupervised manner, the learned meta-handles possess strong interpretability and consistency.

Environment setup

  1. Create a conda environment by conda env create -f environment.yml.
  2. Build and install torch-batch-svd.

Demo

  1. Download data/demo and checkpoints/chair_15.pth from here and place them in the corresponding folder. Pre-processed demo data contains the manifold mesh, sampled control point, sampled surface point cloud, and corresponding biharmonic coordinates.
  2. Run src/demo_target_driven_deform.py to deform a source shape to match a target shape.
  3. Run src/demo_meta_handle.py to generate deformations along the direction of each learned meta-handle.

Train

  1. Download data/chair from here and place them in the corresponding folder.
  2. Run the visdom server. (We use visdom to visualize the training process.)
  3. Run src/train.py to start training.

Note: For different categories, you may need to adjust the number of meta-handles. Also, you need to tune the weights for the loss functions. Different sets of weights may produce significantly different results.

Pre-process your own data

  1. Compile codes in data_preprocessing/.
  2. Build and run manifold to convert your meshes into watertight manifolds.
  3. Run data_preprocessing/normalize_bin to normalize the manifold into a unit bounding sphere.
  4. Build and run fTetWild to convert your manifolds into tetrahedral meshes. Please use --output xxx.mesh option to generate the .mesh format tet mesh. Also, you will get a xxx.mesh__sf.obj for the surface mesh. We will use xxx.mesh and xxx.mesh__sf.obj to calculate the biharmonic weights. We will only deform xxx.mesh__sf.obj later.
  5. Run data_preprocessing/sample_key_points_bin to sample control points from xxx.mesh__sf.obj. We use the FPS algorithm over edge distances to sample the control points.
  6. Run data_preprocessing/calc_weight_bin to calculate the bihrnomic weights. It takes xxx.mesh, xxx.mesh__sf.obj, and the control point file as input, and will output a text file containing the weight matrix for the vertices in xxx.mesh__sf.obj.
  7. Run data_preprocessing/sample_surface_points_bin to sample points on the xxx.mesh__sf.obj and calculate the corresponding biharmonic weights for the sampled point cloud.
  8. In our training, we remove those shapes (about 10%) whose biharmonic weight matrix contains elements that are smaller than -1.5 or greater than 1.5. We find that this can help us to converge faster.
  9. To reduce IO time during training, you may compress the data into a compact form and load them to the memory.

Citation

If you find our work useful, please consider citing our paper:

@article{liu2021deepmetahandles,
  title={DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates},
  author={Liu, Minghua and Sung, Minhyuk and Mech, Radomir and Su, Hao},
  journal={arXiv preprint arXiv:2102.09105},
  year={2021}
}
Owner
Liu Minghua
Liu Minghua
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022