Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Overview

Spchcat

Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Description

spchcat is a command-line tool that reads in audio from .WAV files, a microphone, or system audio inputs and converts any speech found into text. It runs locally on your machine, with no web API calls or network activity, and is open source. It is built on top of Coqui's speech to text library, TensorFlow, KenLM, and data from Mozilla's Common Voice project.

It supports multiple languages thanks to Coqui's library of models. The accuracy of the recognized text will vary widely depending on the language, since some have only small amounts of training data. You can help improve future models by contributing your voice.

Installation

x86

On Debian-based x86 Linux systems like Ubuntu you should be able to install the latest .deb package by downloading and double-clicking it. Other distributions are currently unsupported. The tool requires PulseAudio, which is already present on most desktop systems, but can be installed manually.

There's a notebook you can run in Colab at notebooks/install.ipynb that shows all installation steps.

Raspberry Pi

To install on a Raspberry Pi, download the latest .deb installer package and either double-click on it from the desktop, or run dpkg -i ~/Downloads/spchcat_0.0-2_armhf.deb from the terminal. It will take several minutes to unpack all the language files. This version has only been tested on the latest release of Raspbian, released October 30th 2021, and on a Raspberry Pi 4. It's expected to fail on Raspberry Pi 1's and 0's, due to their CPU architecture.

Usage

After installation, you should be able to run it with no arguments to start capturing audio from the default microphone source, with the results output to the terminal:

spchcat

After you've run the command, start speaking, and you should see the words you're saying appear. The speech recognition is still a work in progress, and the accuracy will depend a lot on the noise levels, your accent, and the complexity of the words, but hopefully you should see something close enough to be useful for simple note taking or other purposes.

System Audio

If you don't have a microphone attached, or want to transcribe audio coming from another program, you can set the --source argument to 'system'. This will attempt to listen to the audio that your machine is playing, including any videos or songs, and transcribe any speech found.

spchcat --source=system

WAV Files

One of the most common audio file formats is WAV. If you don't have any to test with, you can download Coqui's test set to try this option out. If you need to convert files from another format like '.mp3', I recommend using FFMPeg. As with the other source options, spchcat will attempt to find any speech in the files and convert it into a transcript. You don't have to explicitly set the --source argument, as long as file names are present on the command line that will be the default.

spchcat audio/8455-210777-0068.wav 

If you're using the audio file from the test set, you should see output like the following:

TensorFlow: v2.3.0-14-g4bdd3955115
 Coqui STT: v1.1.0-0-gf3605e23
your power is sufficient i said 

You can also specify a folder instead of a single filename, and all .wav files within that directory will be transcribed.

Language Support

So far this documentation has assumed you're using American English, but the tool will default to looking for the language your system has been configured to use. It first looks for the one specified in the LANG environment variable. If no model for that language is found, it will default back to 'en_US'. You can override this by setting the --language argument on the command line, for example:

spchcat --language=de_DE

This works independently of --source and other options, so you can transcribe microphone, system audio, or files in any of the supported languages. It should be noted that some languages have very small amounts of data and so their quality may suffer. If you don't care about country-specific variants, you can also just specify the language part of the code, for example --language=en. This will pick any model that supports the language, regardless of country. The same thing happens if a particular language and country pair isn't found, it will log a warning and fall back to any country that supports the language. For example, if 'en_GB' is specified but only 'en_US' is present, 'en_US' will be used.

Language Name Code
am_ET Amharic
bn_IN Bengali
br_FR Breton
ca_ES Catalan
cnh_MM Hakha-Chin
cs_CZ Czech
cv_RU Chuvash
cy_GB Welsh
de_DE German
dv_MV Dhivehi
el_GR Greek
en_US English
et_EE Estonian
eu_ES Basque
fi_FI Finnish
fr_FR French
fy_NL Frisian
ga_IE Irish
hu_HU Hungarian
id_ID Indonesian
it_IT Italian
ka_GE Georgian
ky_KG Kyrgyz
lg_UG Luganda
lt_LT Lithuanian
lv_LV Latvian
mn_MN Mongolian
mt_MT Maltese
nl_NL Dutch
or_IN Odia
pt_PT Portuguese
rm_CH Romansh-Sursilvan
ro_RO Romanian
ru_RU Russian
rw_RW Kinyarwanda
sah_RU Sakha
sb_DE Upper-Sorbian
sl_SI Slovenian
sw_KE Swahili-Congo
ta_IN Tamil
th_TH Thai
tr_TR Turkish
tt_RU Tatar
uk_UK Ukrainian
wo_SN Wolof
yo_NG Yoruba

All of these models have been collected by Coqui, and contributed by organizations like Inclusive Technology for Marginalized Languages or individuals. All are using the conventions for Coqui's STT library, so custom models could potentially be used, but training and deployment of those is outside the scope of this document. The models themselves are provided under a variety of open source licenses, which can be inspected in their source folders (typically inside /etc/spchcat/models/).

Saving Output

By default spchcat writes any recognized text to the terminal, but it's designed to behave like a normal Unix command-line tool, so it can also be written to a file using indirection like this:

spchcat audio/8455-210777-0068.wav > /tmp/transcript.txt

If you then run cat /tmp/transcript.txt (or open it in an editor) you should see `your power is sufficient i said'. You can also pipe the output to another command. Unfortunately you can't pipe audio into the tool from another executable, since pipes aren't designed for non-text data.

There is one subtle difference between writing to a file and to the terminal. The transcription itself can take some time to settle into a final form, especially when waiting for long words to finish, so when it's being run live in a terminal you'll often see the last couple of words change. This isn't useful when writing to a file, so instead the output is finalized before it's written. This can introduce a small delay when writing live microphone or system audio input.

Build from Source

Tool

It's possible to build all dependencies from source, but I recommending downloading binary versions of Coqui's STT, TensorFlow Lite, and KenLM libraries from github.com/coqui-ai/STT/releases/download/v1.1.0/native_client.tflite.Linux.tar.xz. Extract this to a folder, and then from inside a folder containing this repo run to build the spchcat tool itself:

make spchcat LINK_PATH_STT=-L../STT_download

You should replace ../STT_download with the path to the Coqui library folder. After this you should see a spchcat executable binary in the repo folder. Because it relies on shared libraries, you'll need to specify a path to these too using LD_LIBRARY_PATH unless you have copies in system folders.

LD_LIBRARY_PATH=../STT_download ./spchcat

Models

The previous step only built the executable binary itself, but for the complete tool you also need data files for each language. If you have the gh GitHub command line tool you can run the download_models.py script to fetch Coqui's releases into the build/models folder in your local repo. You can then run your locally-built tool against these models using the --languages_dir option:

LD_LIBRARY_PATH=../STT_download ./spchcat --languages_dir=build/models/

Installer

After you have the tool built and the model data downloaded, create_deb_package.sh will attempt to package them into a Debian installer archive. It will take several minutes to run, and the result ends up in spchcat_0.0-2_amd64.deb.

Release Process

There's a notebook at notebooks/build.pynb that runs through all the build steps needed to downloaded dependencies, data, build the executable, and create the final package. These steps are run inside an Ubuntu 18.04 Docker image to create the binaries that are released.

sudo docker run -it -v`pwd`:/spchcat ubuntu:bionic bash

Contributors

Tool code written by Pete Warden, [email protected], heavily based on Coqui's STT example. It's a pretty thin wrapper on top of Coqui's speech to text library, so the Coqui team should get credit for their amazing work. Also relies on TensorFlow, KenLM, data from Mozilla's Common Voice project, and all the contributors to Coqui's model zoo.

License

Tool code is licensed under the Mozilla Public License Version 2.0, see LICENSE in this folder.

All other libraries and model data are released under their own licenses, see the relevant folders for more details.

Comments
  • How can I use downloaded models?

    How can I use downloaded models?

    <From a user email, added here for posterity>

    I really need to use spchcat with spanish model (es_ES). I see the model in Coqui GitHub, but is not compiled in your .deb package. How can i recompile it to include spanish? Or, maybe are you compiling a new version including it?

    opened by petewarden 1
  • Running on Standby Mode for File Input

    Running on Standby Mode for File Input

    I am looking to use speechcat as in on demand .wav file transcription. However, I require the model to be preloaded and waiting for intermittent transcription of input .wav files. May I ask if there are plans to make such a feature?

    Environment

    uname -a
    Linux raspberrypi 5.15.32-v7+ #1538 SMP Thu Mar 31 19:38:48 BST 2022 armv7l GNU/Linux
    
    opened by kwokyto 0
  • Use feature test to expose `setenv`

    Use feature test to expose `setenv`

    As per the man page, setenv requires _POSIX_C_SOURCE >= 200112L to be defined before including the appropriate header file (stdlib.h). As the other included header files include some standard headers transitively, this needs to go above all includes.

    opened by msbit 0
  • Use float literals for `TEST_FLTEQ`

    Use float literals for `TEST_FLTEQ`

    When using the TEST_FLTEQ macro, pass float literals for the comparision argument, to avoid errors of the form:

    error: absolute value function 'fabsf' given an argument of
    type 'double' but has parameter of type 'float' which may cause
    truncation of value [-Werror,-Wabsolute-value]
    
    opened by msbit 0
  • Avoid possible infinite loop due to chunk ordering

    Avoid possible infinite loop due to chunk ordering

    Properly re-read the chunk ID when iterating through subsequent chunks. This avoids an infinite loop in the case where the data chunk doesn't immediately follow the fmt chunk.

    opened by msbit 0
  • Not working on a Raspberry Pi

    Not working on a Raspberry Pi

    I am trying to get spchcat working on my raspberry pi. When running the command it is printing in the console this:

    TensorFlow: v2.3.0-14-g4bdd3955115
     Coqui STT: v1.1.0-0-gf3605e23
    

    and shortly after the console clears and displays eddie with no audio input? When I speak nothing appears in the console.

    opened by MiniMinnoww 2
Releases(v0.0.2-rpi-alpha)
Owner
Pete Warden
Pete Warden
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023