Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Overview

Spchcat

Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Description

spchcat is a command-line tool that reads in audio from .WAV files, a microphone, or system audio inputs and converts any speech found into text. It runs locally on your machine, with no web API calls or network activity, and is open source. It is built on top of Coqui's speech to text library, TensorFlow, KenLM, and data from Mozilla's Common Voice project.

It supports multiple languages thanks to Coqui's library of models. The accuracy of the recognized text will vary widely depending on the language, since some have only small amounts of training data. You can help improve future models by contributing your voice.

Installation

x86

On Debian-based x86 Linux systems like Ubuntu you should be able to install the latest .deb package by downloading and double-clicking it. Other distributions are currently unsupported. The tool requires PulseAudio, which is already present on most desktop systems, but can be installed manually.

There's a notebook you can run in Colab at notebooks/install.ipynb that shows all installation steps.

Raspberry Pi

To install on a Raspberry Pi, download the latest .deb installer package and either double-click on it from the desktop, or run dpkg -i ~/Downloads/spchcat_0.0-2_armhf.deb from the terminal. It will take several minutes to unpack all the language files. This version has only been tested on the latest release of Raspbian, released October 30th 2021, and on a Raspberry Pi 4. It's expected to fail on Raspberry Pi 1's and 0's, due to their CPU architecture.

Usage

After installation, you should be able to run it with no arguments to start capturing audio from the default microphone source, with the results output to the terminal:

spchcat

After you've run the command, start speaking, and you should see the words you're saying appear. The speech recognition is still a work in progress, and the accuracy will depend a lot on the noise levels, your accent, and the complexity of the words, but hopefully you should see something close enough to be useful for simple note taking or other purposes.

System Audio

If you don't have a microphone attached, or want to transcribe audio coming from another program, you can set the --source argument to 'system'. This will attempt to listen to the audio that your machine is playing, including any videos or songs, and transcribe any speech found.

spchcat --source=system

WAV Files

One of the most common audio file formats is WAV. If you don't have any to test with, you can download Coqui's test set to try this option out. If you need to convert files from another format like '.mp3', I recommend using FFMPeg. As with the other source options, spchcat will attempt to find any speech in the files and convert it into a transcript. You don't have to explicitly set the --source argument, as long as file names are present on the command line that will be the default.

spchcat audio/8455-210777-0068.wav 

If you're using the audio file from the test set, you should see output like the following:

TensorFlow: v2.3.0-14-g4bdd3955115
 Coqui STT: v1.1.0-0-gf3605e23
your power is sufficient i said 

You can also specify a folder instead of a single filename, and all .wav files within that directory will be transcribed.

Language Support

So far this documentation has assumed you're using American English, but the tool will default to looking for the language your system has been configured to use. It first looks for the one specified in the LANG environment variable. If no model for that language is found, it will default back to 'en_US'. You can override this by setting the --language argument on the command line, for example:

spchcat --language=de_DE

This works independently of --source and other options, so you can transcribe microphone, system audio, or files in any of the supported languages. It should be noted that some languages have very small amounts of data and so their quality may suffer. If you don't care about country-specific variants, you can also just specify the language part of the code, for example --language=en. This will pick any model that supports the language, regardless of country. The same thing happens if a particular language and country pair isn't found, it will log a warning and fall back to any country that supports the language. For example, if 'en_GB' is specified but only 'en_US' is present, 'en_US' will be used.

Language Name Code
am_ET Amharic
bn_IN Bengali
br_FR Breton
ca_ES Catalan
cnh_MM Hakha-Chin
cs_CZ Czech
cv_RU Chuvash
cy_GB Welsh
de_DE German
dv_MV Dhivehi
el_GR Greek
en_US English
et_EE Estonian
eu_ES Basque
fi_FI Finnish
fr_FR French
fy_NL Frisian
ga_IE Irish
hu_HU Hungarian
id_ID Indonesian
it_IT Italian
ka_GE Georgian
ky_KG Kyrgyz
lg_UG Luganda
lt_LT Lithuanian
lv_LV Latvian
mn_MN Mongolian
mt_MT Maltese
nl_NL Dutch
or_IN Odia
pt_PT Portuguese
rm_CH Romansh-Sursilvan
ro_RO Romanian
ru_RU Russian
rw_RW Kinyarwanda
sah_RU Sakha
sb_DE Upper-Sorbian
sl_SI Slovenian
sw_KE Swahili-Congo
ta_IN Tamil
th_TH Thai
tr_TR Turkish
tt_RU Tatar
uk_UK Ukrainian
wo_SN Wolof
yo_NG Yoruba

All of these models have been collected by Coqui, and contributed by organizations like Inclusive Technology for Marginalized Languages or individuals. All are using the conventions for Coqui's STT library, so custom models could potentially be used, but training and deployment of those is outside the scope of this document. The models themselves are provided under a variety of open source licenses, which can be inspected in their source folders (typically inside /etc/spchcat/models/).

Saving Output

By default spchcat writes any recognized text to the terminal, but it's designed to behave like a normal Unix command-line tool, so it can also be written to a file using indirection like this:

spchcat audio/8455-210777-0068.wav > /tmp/transcript.txt

If you then run cat /tmp/transcript.txt (or open it in an editor) you should see `your power is sufficient i said'. You can also pipe the output to another command. Unfortunately you can't pipe audio into the tool from another executable, since pipes aren't designed for non-text data.

There is one subtle difference between writing to a file and to the terminal. The transcription itself can take some time to settle into a final form, especially when waiting for long words to finish, so when it's being run live in a terminal you'll often see the last couple of words change. This isn't useful when writing to a file, so instead the output is finalized before it's written. This can introduce a small delay when writing live microphone or system audio input.

Build from Source

Tool

It's possible to build all dependencies from source, but I recommending downloading binary versions of Coqui's STT, TensorFlow Lite, and KenLM libraries from github.com/coqui-ai/STT/releases/download/v1.1.0/native_client.tflite.Linux.tar.xz. Extract this to a folder, and then from inside a folder containing this repo run to build the spchcat tool itself:

make spchcat LINK_PATH_STT=-L../STT_download

You should replace ../STT_download with the path to the Coqui library folder. After this you should see a spchcat executable binary in the repo folder. Because it relies on shared libraries, you'll need to specify a path to these too using LD_LIBRARY_PATH unless you have copies in system folders.

LD_LIBRARY_PATH=../STT_download ./spchcat

Models

The previous step only built the executable binary itself, but for the complete tool you also need data files for each language. If you have the gh GitHub command line tool you can run the download_models.py script to fetch Coqui's releases into the build/models folder in your local repo. You can then run your locally-built tool against these models using the --languages_dir option:

LD_LIBRARY_PATH=../STT_download ./spchcat --languages_dir=build/models/

Installer

After you have the tool built and the model data downloaded, create_deb_package.sh will attempt to package them into a Debian installer archive. It will take several minutes to run, and the result ends up in spchcat_0.0-2_amd64.deb.

Release Process

There's a notebook at notebooks/build.pynb that runs through all the build steps needed to downloaded dependencies, data, build the executable, and create the final package. These steps are run inside an Ubuntu 18.04 Docker image to create the binaries that are released.

sudo docker run -it -v`pwd`:/spchcat ubuntu:bionic bash

Contributors

Tool code written by Pete Warden, [email protected], heavily based on Coqui's STT example. It's a pretty thin wrapper on top of Coqui's speech to text library, so the Coqui team should get credit for their amazing work. Also relies on TensorFlow, KenLM, data from Mozilla's Common Voice project, and all the contributors to Coqui's model zoo.

License

Tool code is licensed under the Mozilla Public License Version 2.0, see LICENSE in this folder.

All other libraries and model data are released under their own licenses, see the relevant folders for more details.

Comments
  • How can I use downloaded models?

    How can I use downloaded models?

    <From a user email, added here for posterity>

    I really need to use spchcat with spanish model (es_ES). I see the model in Coqui GitHub, but is not compiled in your .deb package. How can i recompile it to include spanish? Or, maybe are you compiling a new version including it?

    opened by petewarden 1
  • Running on Standby Mode for File Input

    Running on Standby Mode for File Input

    I am looking to use speechcat as in on demand .wav file transcription. However, I require the model to be preloaded and waiting for intermittent transcription of input .wav files. May I ask if there are plans to make such a feature?

    Environment

    uname -a
    Linux raspberrypi 5.15.32-v7+ #1538 SMP Thu Mar 31 19:38:48 BST 2022 armv7l GNU/Linux
    
    opened by kwokyto 0
  • Use feature test to expose `setenv`

    Use feature test to expose `setenv`

    As per the man page, setenv requires _POSIX_C_SOURCE >= 200112L to be defined before including the appropriate header file (stdlib.h). As the other included header files include some standard headers transitively, this needs to go above all includes.

    opened by msbit 0
  • Use float literals for `TEST_FLTEQ`

    Use float literals for `TEST_FLTEQ`

    When using the TEST_FLTEQ macro, pass float literals for the comparision argument, to avoid errors of the form:

    error: absolute value function 'fabsf' given an argument of
    type 'double' but has parameter of type 'float' which may cause
    truncation of value [-Werror,-Wabsolute-value]
    
    opened by msbit 0
  • Avoid possible infinite loop due to chunk ordering

    Avoid possible infinite loop due to chunk ordering

    Properly re-read the chunk ID when iterating through subsequent chunks. This avoids an infinite loop in the case where the data chunk doesn't immediately follow the fmt chunk.

    opened by msbit 0
  • Not working on a Raspberry Pi

    Not working on a Raspberry Pi

    I am trying to get spchcat working on my raspberry pi. When running the command it is printing in the console this:

    TensorFlow: v2.3.0-14-g4bdd3955115
     Coqui STT: v1.1.0-0-gf3605e23
    

    and shortly after the console clears and displays eddie with no audio input? When I speak nothing appears in the console.

    opened by MiniMinnoww 2
Releases(v0.0.2-rpi-alpha)
Owner
Pete Warden
Pete Warden
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022