Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

Overview

Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library stable-baselines3 to derive a control policy that maximizes melt pool depth consistency. drl_am

Simulation Framework

The Repeated Usage of Stored Line Solutions (RUSLS) method proposed by Wolfer et al. is used to simulate the temperature dynamics in this work. More detail can be found in the following paper:

  • Fast solution strategy for transient heat conduction for arbitrary scan paths in additive manufacturing, Additive Manufacturing, Volume 30, 2019 (link)

Prerequisites

The following packages are required in order to run the associated code:

  • gym==0.17.3
  • torch==1.5.0
  • stable_baselines3==0.7.0
  • numba==0.50.1

These packages can be installed independently, or all at once by running pip install -r requirements.txt. We recommend that these packages are installed in a new conda environment to avoid clashes with existing package installations. Instructions on defining a new conda environment can be found here.

Usage

The overall workflow for this project first defines a gym environment based on the desired scan path, then performs Proximal Policy Optimization to derive a suitable control policy based on the environment. This is done through the following:

Overview

  • EagarTsaiModel.py: implements the RUSLS solution to the Rosenthal equation, as proposed by Wolfer et al.
  • power_square_gym.py, power_triangle_gym.py, velocity_square_gym.py, velocity_triangle_gym.py: Defines custom gym environments for the respective scan paths and control variables. square is used as shorthand for the predefined horizontal cross-hatching path and triangle is used as shorthand for the predefined concentric triangular path.
  • RL_learn_square.py, RL_learn_triangle.py performs Proximal Policy Optimization on the respective scan paths, with command line arguments to change which control parameter is varied.
  • evaluate_learned_policy.py runs a derived control policy on a specific environment. The environment is specified using command line arguments detailed below.

Testing a trained model

To test a trained model on a specific combination of scan path and control parameter, enter this command:

python evaluate_learned_policy.py --path [scan_path] --param [parameter]

Note: [scan_path] should be replaced by square for the horizontal cross-hatching scan path and triangle for the concentric triangular path. [parameter] should be replaced by power to specify power as a control parameter, and velocity to specify velocity as a control parameter.

Upon running this command, you will be prompted to enter the path to the .zip file for the trained model.

Once the evaluation is complete, the results are stored in the folder results/[scan_path]_[parameter]_control/. This folder will contain plots of the variation of the melt depth and control parameters over time, as well as their raw values for later analysis.

Pre-trained models for each of the four possible combinations of scan path and control parameter can be found in pretrained_models.

Training a new model

In order to train a new model based on the predefined horizontal cross-hatching scan path, enter the command:

python RL_learn_square.py --param [parameter]

Here, [parameter] should be replaced by the control parameter desired. The possible options are power and velocity.

The process is similar for the predefined concentric triangular scan path. To train a new model, enter the command:

python RL_learn_triangle.py --param [parameter]

Again, [parameter] should be replaced by the control parameter desired. The possible options are power and velocity.

During training, intermediate model checkpoints will be saved at

training_checkpoints/ppo_[scan_path]_[parameter]/best_model.zip

At the conclusion of training, the finished model is stored at

trained_models/ppo_[scan_path]_[parameter].zip

Defining a custom domain

Changing the powder bed features

In order to define a custom domain for use with a different problem configuration, the EagarTsaiModel.py file should be edited directly. Within the EagarTsai() class instantiation, the thermodynamic properties and domain dimensions can be specified. Additionally, the resolution and boundary conditions can be provided as arguments to the EagarTsai class. bc = 'flux' and bc = 'temp' implements an adiabatic and constant temperature boundary condition respectively.

Changing the scan path

A new scan path can be defined by creating a new custom gym environment, and writing a custom step() function to represent the desired scan path, similar to the [parameter]_[scan_path]_gym.py scripts in this repository. Considerations for both how the laser moves during a single segment and the placement of each segment within the overall path should be described in this function. More detail on the gym framework for defining custom environments can be found here.

Monitoring the training process with TensorBoard

Tensorboard provides resources for monitoring various metrics of the PPO training process, and can be installed using pip install tensorboard. To open the tensorboard dashboard, enter the command:

tensorboard --log_dir ./tensorboard_logs/ppo_[scan_path]_[parameter]/ppo_[scan_path]_[parameter]_[run_ID]

Tensorboard log files are periodically saved during training, with information on cumulative reward as well as various loss metrics.

Owner
BaratiLab
BaratiLab
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022