Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Related tags

Deep LearningLIID
Overview

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

This paper has been accepted and early accessed in IEEE TPAMI 2020.

Code contact e-mail: Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn)

Introduction

Weakly supervised semantic instance segmentation with only image-level supervision, instead of relying on expensive pixel-wise masks or bounding box annotations, is an important problem to alleviate the data-hungry nature of deep learning. In this paper, we tackle this challenging problem by aggregating the image-level information of all training images into a large knowledge graph and exploiting semantic relationships from this graph. Specifically, our effort starts with some generic segment-based object proposals (SOP) without category priors. We propose a multiple instance learning (MIL) framework, which can be trained in an end-to-end manner using training images with image-level labels. For each proposal, this MIL framework can simultaneously compute probability distributions and category-aware semantic features, with which we can formulate a large undirected graph. The category of background is also included in this graph to remove the massive noisy object proposals. An optimal multi-way cut of this graph can thus assign a reliable category label to each proposal. The denoised SOP with assigned category labels can be viewed as pseudo instance segmentation of training images, which are used to train fully supervised models. The proposed approach achieves state-of-the-art performance for both weakly supervised instance segmentation and semantic segmentation.

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{liu2020leveraging,
  title={Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation},
  author={Yun Liu and Yu-Huan Wu and Peisong Wen and Yujun Shi and Yu Qiu and Ming-Ming Cheng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020},
  doi={10.1109/TPAMI.2020.3023152},
  publisher={IEEE}
}

Requirements

  • Python 3.5, PyTorch 0.4.1, Torchvision 0.2.2.post3, CUDA 9.0
  • Validated on Ubuntu 16.04, NVIDIA TITAN Xp

Testing LIID

  1. Clone the LIID repository

    git clone https://github.com/yun-liu/LIID.git
    
  2. Download the pretrained model of the MIL framework, and put them into $ROOT_DIR folder.

  3. Download the Pascal VOC2012 dataset. Extract the dataset files into $VOC2012_ROOT folder.

  4. Download the segment-based object proposals, and extract the data into $VOC2012_ROOT/proposals/ folder.

  5. Download the compiled binary files, and put the binary files into $ROOT_DIR/cut/multiway_cut/.

  6. Change the path in cut/run.sh to your own project root.

  7. run ./make.sh to build CUDA dependences.

  8. Run python3 gen_proposals.py. Remember to change the voc-root to your own $VOC2012_ROOT. The proposals with labels will be generated in the $ROOT_DIR/proposals folder.

Pretrained Models and data

The pretrained model of the MIL framework can be downloaded here.

The Pascal VOC2012 dataset can be downloaded here or other mirror websites.

S4Net proposals used for testing can be downloaded here.

The 24K simple ImageNet data (including S4Net proposals) can be downloaded here.

MCG proposals can be downloaded here.

Training with Pseudo Labels

For instance segmentation, you can use official or popular public Mask R-CNN projects like mmdetecion, Detectron2, maskrcnn-benchmark, or other popular open-source projects.

For semantic segmentation, you can use official Caffe implementation of deeplab, third-party PyTorch implementation here, or third-party Tensorflow Implementation here.

Precomputed Results

Results of instance segmentation on the Pascal VOC2012 segmentation val split can be downloaded here.

Results of semantic segmentation trained with 10K images, 10K images + 24K simple ImageNet images, 10K images (Res2Net-101) on the Pascal VOC2012 segmentation val split can be downloaded here.

Other Notes

Since it is difficult to install and configure IBM CPLEX, for convenience, we provide the compiled binary file which can run directly. If you desire to get the complete source code for solving the multi-way cut and ensure that there is no commercial use of it, please contact Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn).

Acknowledgment

This code is based on IBM CPLEX. Thanks to the IBM CPLEX academic version.

Owner
Yun Liu
PhD student, Nankai University, China
Yun Liu
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022