Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Related tags

Deep LearningLIID
Overview

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

This paper has been accepted and early accessed in IEEE TPAMI 2020.

Code contact e-mail: Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn)

Introduction

Weakly supervised semantic instance segmentation with only image-level supervision, instead of relying on expensive pixel-wise masks or bounding box annotations, is an important problem to alleviate the data-hungry nature of deep learning. In this paper, we tackle this challenging problem by aggregating the image-level information of all training images into a large knowledge graph and exploiting semantic relationships from this graph. Specifically, our effort starts with some generic segment-based object proposals (SOP) without category priors. We propose a multiple instance learning (MIL) framework, which can be trained in an end-to-end manner using training images with image-level labels. For each proposal, this MIL framework can simultaneously compute probability distributions and category-aware semantic features, with which we can formulate a large undirected graph. The category of background is also included in this graph to remove the massive noisy object proposals. An optimal multi-way cut of this graph can thus assign a reliable category label to each proposal. The denoised SOP with assigned category labels can be viewed as pseudo instance segmentation of training images, which are used to train fully supervised models. The proposed approach achieves state-of-the-art performance for both weakly supervised instance segmentation and semantic segmentation.

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{liu2020leveraging,
  title={Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation},
  author={Yun Liu and Yu-Huan Wu and Peisong Wen and Yujun Shi and Yu Qiu and Ming-Ming Cheng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020},
  doi={10.1109/TPAMI.2020.3023152},
  publisher={IEEE}
}

Requirements

  • Python 3.5, PyTorch 0.4.1, Torchvision 0.2.2.post3, CUDA 9.0
  • Validated on Ubuntu 16.04, NVIDIA TITAN Xp

Testing LIID

  1. Clone the LIID repository

    git clone https://github.com/yun-liu/LIID.git
    
  2. Download the pretrained model of the MIL framework, and put them into $ROOT_DIR folder.

  3. Download the Pascal VOC2012 dataset. Extract the dataset files into $VOC2012_ROOT folder.

  4. Download the segment-based object proposals, and extract the data into $VOC2012_ROOT/proposals/ folder.

  5. Download the compiled binary files, and put the binary files into $ROOT_DIR/cut/multiway_cut/.

  6. Change the path in cut/run.sh to your own project root.

  7. run ./make.sh to build CUDA dependences.

  8. Run python3 gen_proposals.py. Remember to change the voc-root to your own $VOC2012_ROOT. The proposals with labels will be generated in the $ROOT_DIR/proposals folder.

Pretrained Models and data

The pretrained model of the MIL framework can be downloaded here.

The Pascal VOC2012 dataset can be downloaded here or other mirror websites.

S4Net proposals used for testing can be downloaded here.

The 24K simple ImageNet data (including S4Net proposals) can be downloaded here.

MCG proposals can be downloaded here.

Training with Pseudo Labels

For instance segmentation, you can use official or popular public Mask R-CNN projects like mmdetecion, Detectron2, maskrcnn-benchmark, or other popular open-source projects.

For semantic segmentation, you can use official Caffe implementation of deeplab, third-party PyTorch implementation here, or third-party Tensorflow Implementation here.

Precomputed Results

Results of instance segmentation on the Pascal VOC2012 segmentation val split can be downloaded here.

Results of semantic segmentation trained with 10K images, 10K images + 24K simple ImageNet images, 10K images (Res2Net-101) on the Pascal VOC2012 segmentation val split can be downloaded here.

Other Notes

Since it is difficult to install and configure IBM CPLEX, for convenience, we provide the compiled binary file which can run directly. If you desire to get the complete source code for solving the multi-way cut and ensure that there is no commercial use of it, please contact Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn).

Acknowledgment

This code is based on IBM CPLEX. Thanks to the IBM CPLEX academic version.

Owner
Yun Liu
PhD student, Nankai University, China
Yun Liu
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023