Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Related tags

Deep LearningLIID
Overview

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

This paper has been accepted and early accessed in IEEE TPAMI 2020.

Code contact e-mail: Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn)

Introduction

Weakly supervised semantic instance segmentation with only image-level supervision, instead of relying on expensive pixel-wise masks or bounding box annotations, is an important problem to alleviate the data-hungry nature of deep learning. In this paper, we tackle this challenging problem by aggregating the image-level information of all training images into a large knowledge graph and exploiting semantic relationships from this graph. Specifically, our effort starts with some generic segment-based object proposals (SOP) without category priors. We propose a multiple instance learning (MIL) framework, which can be trained in an end-to-end manner using training images with image-level labels. For each proposal, this MIL framework can simultaneously compute probability distributions and category-aware semantic features, with which we can formulate a large undirected graph. The category of background is also included in this graph to remove the massive noisy object proposals. An optimal multi-way cut of this graph can thus assign a reliable category label to each proposal. The denoised SOP with assigned category labels can be viewed as pseudo instance segmentation of training images, which are used to train fully supervised models. The proposed approach achieves state-of-the-art performance for both weakly supervised instance segmentation and semantic segmentation.

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{liu2020leveraging,
  title={Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation},
  author={Yun Liu and Yu-Huan Wu and Peisong Wen and Yujun Shi and Yu Qiu and Ming-Ming Cheng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020},
  doi={10.1109/TPAMI.2020.3023152},
  publisher={IEEE}
}

Requirements

  • Python 3.5, PyTorch 0.4.1, Torchvision 0.2.2.post3, CUDA 9.0
  • Validated on Ubuntu 16.04, NVIDIA TITAN Xp

Testing LIID

  1. Clone the LIID repository

    git clone https://github.com/yun-liu/LIID.git
    
  2. Download the pretrained model of the MIL framework, and put them into $ROOT_DIR folder.

  3. Download the Pascal VOC2012 dataset. Extract the dataset files into $VOC2012_ROOT folder.

  4. Download the segment-based object proposals, and extract the data into $VOC2012_ROOT/proposals/ folder.

  5. Download the compiled binary files, and put the binary files into $ROOT_DIR/cut/multiway_cut/.

  6. Change the path in cut/run.sh to your own project root.

  7. run ./make.sh to build CUDA dependences.

  8. Run python3 gen_proposals.py. Remember to change the voc-root to your own $VOC2012_ROOT. The proposals with labels will be generated in the $ROOT_DIR/proposals folder.

Pretrained Models and data

The pretrained model of the MIL framework can be downloaded here.

The Pascal VOC2012 dataset can be downloaded here or other mirror websites.

S4Net proposals used for testing can be downloaded here.

The 24K simple ImageNet data (including S4Net proposals) can be downloaded here.

MCG proposals can be downloaded here.

Training with Pseudo Labels

For instance segmentation, you can use official or popular public Mask R-CNN projects like mmdetecion, Detectron2, maskrcnn-benchmark, or other popular open-source projects.

For semantic segmentation, you can use official Caffe implementation of deeplab, third-party PyTorch implementation here, or third-party Tensorflow Implementation here.

Precomputed Results

Results of instance segmentation on the Pascal VOC2012 segmentation val split can be downloaded here.

Results of semantic segmentation trained with 10K images, 10K images + 24K simple ImageNet images, 10K images (Res2Net-101) on the Pascal VOC2012 segmentation val split can be downloaded here.

Other Notes

Since it is difficult to install and configure IBM CPLEX, for convenience, we provide the compiled binary file which can run directly. If you desire to get the complete source code for solving the multi-way cut and ensure that there is no commercial use of it, please contact Yu-Huan Wu (wuyuhuan (at) mail(dot)nankai(dot)edu(dot)cn).

Acknowledgment

This code is based on IBM CPLEX. Thanks to the IBM CPLEX academic version.

Owner
Yun Liu
PhD student, Nankai University, China
Yun Liu
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022