Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Overview

Adversarial Training Against Location-Optimized Adversarial Patches

arXiv | Paper | Code | Video | Slides

Code for the paper:

Sukrut Rao, David Stutz, Bernt Schiele. (2020) Adversarial Training Against Location-Optimized Adversarial Patches. In: Bartoli A., Fusiello A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science, vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_32

Setup

Requirements

  • Python 3.7 or above
  • PyTorch
  • scipy
  • h5py
  • scikit-image
  • scikit-learn

Optional requirements

To use script to convert data to HDF5 format

  • torchvision
  • Pillow
  • pandas

To use Tensorboard logging

  • tensorboard

With the exception of Python and PyTorch, all requirements can be installed directly using pip:

$ pip install -r requirements.txt

Setting the paths

In common/paths.py, set the following variables:

  • BASE_DATA: base path for datasets.
  • BASE_EXPERIMENTS: base path for trained models and perturbations after attacks.
  • BASE_LOGS: base path for tensorboard logs (if used).

Data

Data needs to be provided in the HDF5 format. To use a dataset, use the following steps:

  • In common/paths.py, set BASE_DATA to the base path where data will be stored.
  • For each dataset, create a directory named <dataset-name> in BASE_DATA
  • Place the following files in this directory:
    • train_images.h5: Training images
    • train_labels.h5: Training labels
    • test_images.h5: Test images
    • test_labels.h5: Test labels

A script create_dataset_h5.py has been provided to convert data in a comma-separated CSV file consisting of full paths to images and their corresponding labels to a HDF5 file. To use this script, first set BASE_DATA in common/paths.py. If the files containing training and test data paths and labels are train.csv and test.csv respectively, use:

$ python scripts/create_dataset_h5.py --train_csv /path/to/train.csv --test_csv /path/to/test.csv --dataset dataset_name

where dataset_name is the name for the dataset.

Training and evaluating a model

Training

To train a model, use:

$ python scripts/train.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/train.py -h

Evaluation

To evaluate a trained model, use:

$ python scripts/evaluate.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/evaluate.py -h

Using models and attacks from the paper

The following provides the arguments to use with the training and evaluation scripts to train the models and run the attacks described in the paper. The commands below assume that the dataset is named cifar10 and has 10 classes.

Models

Normal

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --cuda --mode normal --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Occlusion

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 1 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Fixed

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --location fixed --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Rand

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-RandLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type random --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-FullLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type full --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Attacks

The arguments used here correspond to using 100 iterations and 30 attempts. These can be changed by appropriately setting --iterations and --attempts respectively.

AP-Fixed

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location fixed --epsilon 0.05 --iterations 100 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-Rand

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-RandLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type random --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-FullLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type full --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

Citation

Please cite the paper as follows:

@InProceedings{Rao2020Adversarial,
author = {Sukrut Rao and David Stutz and Bernt Schiele},
title = {Adversarial Training Against Location-Optimized Adversarial Patches},
booktitle = {Computer Vision -- ECCV 2020 Workshops},
year = {2020},
editor = {Adrien Bartoli and Andrea Fusiello},
publisher = {Springer International Publishing},
address = {Cham},
pages = {429--448},
isbn = {978-3-030-68238-5}
}

Acknowledgement

This repository uses code from davidstutz/confidence-calibrated-adversarial-training.

License

Copyright (c) 2020 Sukrut Rao, David Stutz, Max-Planck-Gesellschaft

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the corresponding papers (see above) in documents and papers that report on research using the Software.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022