Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Overview

Geometry-aware Instance-reweighted Adversarial Training

This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (https://openreview.net/forum?id=iAX0l6Cz8ub) (ICLR oral)
Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama and Mohan Kankanhalli

What is the nature of adversarial training?

Adversarial training employs adversarial data for updating the models. For more details of the nature of adversarial training, refer to this FAT's GitHub for the preliminary.
In this repo, you will know:

FACT 1: Model Capacity is NOT enough for adversarial training.

We plot standard training error (Natural) and adversarial training error (PGD-10) over the training epochs of the standard AT (Madry's) on CIFAR-10 dataset. *Left panel*: AT on different sizes of network (blue lines) and standard training (ST, the red line) on ResNet-18. *Right panel*: AT on ResNet-18 under different perturbation bounds eps_train.

Refer to FAT's GitHub for the standard AT by setting

python FAT.py --epsilon 0.031 --net 'resnet18' --tau 10 --dynamictau False

OR using codes in this repo by setting

python GAIRAT.py --epsilon 0.031 --net 'resnet18' --Lambda 'inf'

to recover the standard AT (Madry's).

The over-parameterized models that fit nataral data entirely in the standard training (ST) are still far from enough for fitting adversarial data in adversarial training (AT). Compared with ST fitting the natural data points, AT smooths the neighborhoods of natural data, so that adversarial data consume significantly more model capacity than natural data.

The volume of this neighborhood is exponentially large w.r.t. the input dimension , even if is small.

Under the computational budget of 100 epochs, the networks hardly reach zero error on the adversarial training data.

FACT 2: Data points are inherently different.

More attackable data are closer to the decision boundary.

More guarded data are farther away from the decision boundary.

More attackable data (lighter red and blue) are closer to the decision boundary; more guarded data (darker red and blue) are farther away from the decision boundary. *Left panel*: Two toy examples. *Right panel*: The model’s output distribution of two randomly selected classes from the CIFAR-10 dataset. The degree of robustness (denoted by the color gradient) of a data point is calculated based on the least number of iterations κ that PGD needs to find its misclassified adversarial variant.

Therefore, given the limited model capacity, we should treat data differently for updating the model in adversarial training.

IDEA: Geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversarial data point should be assigned with larger/smaller weight for updating the model.
To implement the idea, we propose geometry-aware instance-reweighted adversarial training (GAIRAT), where the weights are based on how difficult it is to attack a natural data point.
"how difficult it is to attack a natural data point" is approximated by the number of PGD steps that the PGD method requires to generate its misclassified adversarial variant.

The illustration of GAIRAT. GAIRAT explicitly gives larger weights on the losses of adversarial data (larger red), whose natural counterparts are closer to the decision boundary (lighter blue). GAIRAT explicitly gives smaller weights on the losses of adversarial data (smaller red), whose natural counterparts are farther away from the decision boundary (darker blue).

GAIRAT's Implementation

For updating the model, GAIRAT assigns instance dependent weight (reweight) on the loss of the adversarial data (found in GAIR.py).
The instance dependent weight depends on num_steps, which indicates the least PGD step numbers needed for the misclassified adversarial variant.

Preferred Prerequisites

  • Python (3.6)
  • Pytorch (1.2.0)
  • CUDA
  • numpy
  • foolbox

Running GAIRAT, GAIR-FAT on benchmark datasets (CIFAR-10 and SVHN)

Here are examples:

  • Train GAIRAT and GAIR-FAT on WRN-32-10 model on CIFAR-10 and compare our results with AT, FAT
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py 
  • How to recover the original FAT and AT using our code?
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py --Lambda 'inf' --output_dir './AT_results' 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py --Lambda 'inf' --output_dir './FAT_results' 
  • Evaluations After running, you can find ./GAIRAT_result/log_results.txt and ./GAIR_FAT_result/log_results.txt for checking Natural Acc. and PGD-20 test Acc.
    We also evaluate our models using PGD+. PGD+ is the same as PG_ours in RST repo. PG_ours is PGD with 5 random starts, and each start has 40 steps with step size 0.01 (It has 40 × 5 = 200 iterations for each test data). Since PGD+ is computational defense, we only evaluate the best checkpoint bestpoint.pth.tar and the last checkpoint checkpoint.pth.tar in the folders GAIRAT_result and GAIR_FAT_result respectively.
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIRAT_result/bestpoint.pth.tar' --output_suffix='./GAIRAT_PGD_plus'
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIR_FAT_result/bestpoint.pth.tar' --output_suffix='./GAIR_FAT_PGD_plus'

White-box evaluations on WRN-32-10

Defense (best checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.92 % 0.24% 51.96% 0.21% 51.28% 0.23%
FAT 89.16% 0.15% 51.24% 0.14% 46.14% 0.19%
GAIRAT 85.75% 0.23% 57.81% 0.54% 55.61% 0.61%
GAIR-FAT 88.59% 0.12% 56.21% 0.52% 53.50% 0.60%
Defense (last checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.62 % 0.22% 46.73% 0.08% 46.08% 0.07%
FAT 88.18% 0.19% 46.79% 0.34% 45.80% 0.16%
GAIRAT 85.49% 0.25% 53.76% 0.49% 50.32% 0.48%
GAIR-FAT 88.44% 0.10% 50.64% 0.56% 47.51% 0.51%

For more details, refer to Table 1 and Appendix C.8 in the paper.

Benchmarking robustness with additional 500K unlabeled data on CIFAR-10 dataset.

In this repo, we unleash the full power of our geometry-aware instance-reweighted methods by incorporating 500K unlabeled data (i.e., GAIR-RST). In terms of both evaluation metrics, i.e., generalization and robustness, we can obtain the best WRN-28-10 model among all public available robust models.

  • How to create the such the superior model from scratch?
  1. Download ti_500K_pseudo_labeled.pickle containing our 500K pseudo-labeled TinyImages from this link (Auxillary data provided by Carmon et al. 2019). Store ti_500K_pseudo_labeled.pickle into the folder ./data
  2. You may need mutilple GPUs for running this.
chmod +x ./GAIR_RST/run_training.sh
./GAIR_RST/run_training.sh
  1. We evaluate the robust model using natural test accuracy on natural test data and roubust test accuracy by Auto Attack. Auto Attack is combination of two white box attacks and two black box attacks.
chmod +x ./GAIR_RST/autoattack/examples/run_eval.sh

White-box evaluations on WRN-28-10

We evaluate the robustness on CIFAR-10 dataset under auto-attack (Croce & Hein, 2020).

Here we list the results using WRN-28-10 on the leadboard and our results. In particular, we use the test eps = 0.031 which keeps the same as the training eps of our GAIR-RST.

CIFAR-10 - Linf

The robust accuracy is evaluated at eps = 8/255, except for those marked with * for which eps = 0.031, where eps is the maximal Linf-norm allowed for the adversarial perturbations. The eps used is the same set in the original papers.
Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

# method/paper model architecture clean report. AA
1 (Gowal et al., 2020) authors WRN-28-10 89.48 62.76 62.80
2 (Wu et al., 2020b) available WRN-28-10 88.25 60.04 60.04
- GAIR-RST (Ours)* available WRN-28-10 89.36 59.64 59.64
3 (Carmon et al., 2019) available WRN-28-10 89.69 62.5 59.53
4 (Sehwag et al., 2020) available WRN-28-10 88.98 - 57.14
5 (Wang et al., 2020) available WRN-28-10 87.50 65.04 56.29
6 (Hendrycks et al., 2019) available WRN-28-10 87.11 57.4 54.92
7 (Moosavi-Dezfooli et al., 2019) authors WRN-28-10 83.11 41.4 38.50
8 (Zhang & Wang, 2019) available WRN-28-10 89.98 60.6 36.64
9 (Zhang & Xu, 2020) available WRN-28-10 90.25 68.7 36.45

The results show our GAIR-RST method can facilitate a competitive model by utilizing additional unlabeled data.

Wanna download our superior model for other purposes? Sure!

We welcome various attack methods to attack our defense models. For cifar-10 dataset, we normalize all images into [0,1].

Download our pretrained models checkpoint-epoch200.pt into the folder ./GAIR_RST/GAIR_RST_results through this Google Drive link.

You can evaluate this pretrained model through ./GAIR_RST/autoattack/examples/run_eval.sh

Reference

@inproceedings{
zhang2021_GAIRAT,
title={Geometry-aware Instance-reweighted Adversarial Training},
author={Jingfeng Zhang and Jianing Zhu and Gang Niu and Bo Han and Masashi Sugiyama and Mohan Kankanhalli},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=iAX0l6Cz8ub}
}

Contact

Please contact [email protected] or [email protected] and [email protected] if you have any question on the codes.

Owner
Jingfeng
Jingfeng Zhang, Postdoc (2021 - ) at RIKEN-AIP, Tokyo; Ph.D. (2016- 2020) from the School of Computing at the National University of Singapore.
Jingfeng
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023