[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Related tags

Deep Learningsoho
Overview

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral]

By Zhicheng Huang*, Zhaoyang Zeng*, Yupan Huang*, Bei Liu, Dongmei Fu and Jianlong Fu

Introduction

This is the official implementation of the paper. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches.

Architecture

Release Progress

  • VQA Codebase

  • Pre-training Codebase

  • Other Downstream Tasks

Installation

conda create -n soho python=3.7
conda activate soho
git clone https://github.com/researchmm/soho.git
cd soho
bash tools/install.sh

Getting Started

  1. Download the training, validation and test data

    mkdir -p $SOHO_ROOT/data/coco
    cd $SOHO_ROOT/data/coco
    # need to update
    wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/train2014.zip
    wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/val2014.zip
    wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/test2015.zip
    wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/train_data_qa_caption_new_box.json
    wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/val_data_qa_caption_new_box.json
    wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/test_data_qa.json
  2. Download the Pre-training models

    cd $SOHO_ROOT
    mkdir -p $SOHO_ROOT/pretrained
    cd $SOHO_ROOT/pretrained
    # the following need to update
    wget 
  3. Training a VQA model

    cd $SOHO_ROOT
    #use 8 GPUS to train the model
    bash tools/dist_train.sh configs/VQA/soho_res18_vqa.py 8
  4. Evaluate a VQA model

    bash tools/dist_test_vqa.sh configs/VQA/soho_res18_vqa.py 18 8

Citation

If you find this repo useful in your research, please consider citing the following papers:

@inproceedings{huang2021seeing,
  title={Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning},
  author={Huang, Zhicheng and Zeng, Zhaoyang and Huang, Yupan and Liu, Bei and Fu, Dongmei and Fu, Jianlong},
  booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

@article{huang2020pixel,
  title={Pixel-bert: Aligning image pixels with text by deep multi-modal transformers},
  author={Huang, Zhicheng and Zeng, Zhaoyang and Liu, Bei and Fu, Dongmei and Fu, Jianlong},
  journal={arXiv preprint arXiv:2004.00849},
  year={2020}
}

Acknowledgements

We would like to thank mmcv and mmdetection. Our commons lib is based on mmcv.

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022