FS-Mol: A Few-Shot Learning Dataset of Molecules

Related tags

Deep LearningFS-Mol
Overview

FS-Mol: A Few-Shot Learning Dataset of Molecules

This repository contains data and code for FS-Mol: A Few-Shot Learning Dataset of Molecules.

Installation

  1. Clone or download this repository

  2. Install dependencies

    cd FS-Mol
    
    conda env create -f environment.yml
    conda activate fsmol
    

The code for the Molecule Attention Transformer baseline is added as a submodule of this repository. Hence, in order to be able to run MAT, one has to clone our repository via git clone --recurse-submodules. Alternatively, one can first clone our repository normally, and then set up submodules via git submodule update --init. If the MAT submodule is not set up, all the other parts of our repository should continue to work.

Data

The dataset is available as a download, FS-Mol Data, split into train, valid and test folders. Additionally, we specify which tasks are to be used with the file datasets/fsmol-0.1.json, a default list of tasks for each data fold. We note that the complete dataset contains many more tasks. Should use of all possible training tasks available be desired, the training script argument --task_list_file datasets/entire_train_set.json should be used. The task lists will be used to version FS-Mol in future iterations as more data becomes available via ChEMBL.

Tasks are stored as individual compressed JSONLines files, with each line corresponding to the information to a single datapoint for the task. Each datapoint is stored as a JSON dictionary, following a fixed structure:

{
    "SMILES": "SMILES_STRING",
    "Property": "ACTIVITY BOOL LABEL",
    "Assay_ID": "CHEMBL ID",
    "RegressionProperty": "ACTIVITY VALUE",
    "LogRegressionProperty": "LOG ACTIVITY VALUE",
    "Relation": "ASSUMED RELATION OF MEASURED VALUE TO TRUE VALUE",
    "AssayType": "TYPE OF ASSAY",
    "fingerprints": [...],
    "descriptors": [...],
    "graph": {
        "adjacency_lists": [
           [... SINGLE BONDS AS PAIRS ...],
           [... DOUBLE BONDS AS PAIRS ...],
           [... TRIPLE BONDS AS PAIRS ...]
        ],
        "node_types": [...ATOM TYPES...],
        "node_features": [...NODE FEATURES...],
    }
}

FSMolDataset

The fs_mol.data.FSMolDataset class provides programmatic access in Python to the train/valid/test tasks of the few-shot dataset. An instance is created from the data directory by FSMolDataset.from_directory(/path/to/dataset). More details and examples of how to use FSMolDataset are available in fs_mol/notebooks/dataset.ipynb.

Evaluating a new Model

We have provided an implementation of the FS-Mol evaluation methodology in fs_mol.utils.eval_utils.eval_model(). This is a framework-agnostic python method, and we demonstrate how to use it for evaluating a new model in detail in notebooks/evaluation.ipynb.

Note that our baseline test scripts (fs_mol/baseline_test.py, fs_mol/maml_test.py, fs_mol/mat_test, fs_mol/multitask_test.py and fs_mol/protonet_test.py) use this method as well and can serve as examples on how to integrate per-task fine-tuning in TensorFlow (maml_test.py), fine-tuning in PyTorch (mat_test.py) and single-task training for scikit-learn models (baseline_test.py). These scripts also support the --task_list_file parameter to choose different sets of test tasks, as required.

Baseline Model Implementations

We provide implementations for three key few-shot learning methods: Multitask learning, Model-Agnostic Meta-Learning, and Prototypical Networks, as well as evaluation on the Single-Task baselines and the Molecule Attention Transformer (MAT) paper, code.

All results and associated plots are found in the baselines/ directory.

These baseline methods can be run on the FS-Mol dataset as follows:

kNNs and Random Forests -- Single Task Baselines

Our kNN and RF baselines are obtained by permitting grid-search over a industry-standard parameter set, detailed in the script baseline_test.py.

The baseline single-task evaluation can be run as follows, with a choice of kNN or randomForest model:

python fs_mol/baseline_test.py /path/to/data --model {kNN, randomForest}

Molecule Attention Transformer

The Molecule Attention Transformer (MAT) paper, code.

The Molecule Attention Transformer can be evaluated as:

python fs_mol/mat_test.py /path/to/pretrained-mat /path/to/data

GNN-MAML pre-training and evaluation

The GNN-MAML model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $8$-layer GNN with node-embedding dimension $128$. The GNN uses "Edge-MLP" message passing. The model was trained with a support set size of $16$ according to the MAML procedure Finn 2017. The hyperparameters used in the model checkpoint are default settings of maml_train.py.

The current defaults were used to train the final versions of GNN-MAML available here.

python fs_mol/maml_train.py /path/to/data 

Evaluation is run as:

python fs_mol/maml_test.py /path/to/data --trained_model /path/to/gnn-maml-checkpoint

GNN-MT pre-training and evaluation

The GNN-MT model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $10$-layer GNN with node-embedding dimension $128$. The model uses principal neighbourhood aggregation (PNA) message passing. The hyperparameters used in the model checkpoint are default settings of multitask_train.py. This method has similarities to the approach taken for the task-only training contained within Hu 2019

python fs_mol/multitask_train.py /path/to/data 

Evaluation is run as:

python fs_mol/multitask_test.py /path/to/gnn-mt-checkpoint /path/to/data

Prototypical Networks (PN) pre-training and evaluation

The prototypical networks method Snell 2017 extracts representations of support set datapoints and uses these to classify positive and negative examples. We here used the Mahalonobis distance as a metric for query point distance to class prototypes.

python fs_mol/protonet_train.py /path/to/data 

Evaluation is run as:

python fs_mol/protonet_test.py /path/to/pn-checkpoint /path/to/data

Available Model Checkpoints

We provide pre-trained models for GNN-MAML, GNN-MT and PN, these are downloadable from the links to figshare.

Model Name Description Checkpoint File
GNN-MAML Support set size 16. 8-layer GNN. Edge MLP message passing. MAML-Support16_best_validation.pkl
GNN-MT 10-layer GNN. PNA message passing multitask_best_model.pt
PN 10-layer GGN, PNA message passing. ECFP+GNN, Mahalonobis distance metric PN-Support64_best_validation.pt

Specifying, Training and Evaluating New Model Implementations

Flexible definition of few-shot models and single task models is defined as demonstrated in the range of train and test scripts in fs_mol.

We give a detailed example of how to use the abstract class AbstractTorchFSMolModel in notebooks/integrating_torch_models.ipynb to integrate a new general PyTorch model, and note that the evaluation procedure described below is demonstrated on sklearn models in fs_mol/baseline_test.py and on a Tensorflow-based GNN model in fs_mol/maml_test.py.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022