FS-Mol: A Few-Shot Learning Dataset of Molecules

Related tags

Deep LearningFS-Mol
Overview

FS-Mol: A Few-Shot Learning Dataset of Molecules

This repository contains data and code for FS-Mol: A Few-Shot Learning Dataset of Molecules.

Installation

  1. Clone or download this repository

  2. Install dependencies

    cd FS-Mol
    
    conda env create -f environment.yml
    conda activate fsmol
    

The code for the Molecule Attention Transformer baseline is added as a submodule of this repository. Hence, in order to be able to run MAT, one has to clone our repository via git clone --recurse-submodules. Alternatively, one can first clone our repository normally, and then set up submodules via git submodule update --init. If the MAT submodule is not set up, all the other parts of our repository should continue to work.

Data

The dataset is available as a download, FS-Mol Data, split into train, valid and test folders. Additionally, we specify which tasks are to be used with the file datasets/fsmol-0.1.json, a default list of tasks for each data fold. We note that the complete dataset contains many more tasks. Should use of all possible training tasks available be desired, the training script argument --task_list_file datasets/entire_train_set.json should be used. The task lists will be used to version FS-Mol in future iterations as more data becomes available via ChEMBL.

Tasks are stored as individual compressed JSONLines files, with each line corresponding to the information to a single datapoint for the task. Each datapoint is stored as a JSON dictionary, following a fixed structure:

{
    "SMILES": "SMILES_STRING",
    "Property": "ACTIVITY BOOL LABEL",
    "Assay_ID": "CHEMBL ID",
    "RegressionProperty": "ACTIVITY VALUE",
    "LogRegressionProperty": "LOG ACTIVITY VALUE",
    "Relation": "ASSUMED RELATION OF MEASURED VALUE TO TRUE VALUE",
    "AssayType": "TYPE OF ASSAY",
    "fingerprints": [...],
    "descriptors": [...],
    "graph": {
        "adjacency_lists": [
           [... SINGLE BONDS AS PAIRS ...],
           [... DOUBLE BONDS AS PAIRS ...],
           [... TRIPLE BONDS AS PAIRS ...]
        ],
        "node_types": [...ATOM TYPES...],
        "node_features": [...NODE FEATURES...],
    }
}

FSMolDataset

The fs_mol.data.FSMolDataset class provides programmatic access in Python to the train/valid/test tasks of the few-shot dataset. An instance is created from the data directory by FSMolDataset.from_directory(/path/to/dataset). More details and examples of how to use FSMolDataset are available in fs_mol/notebooks/dataset.ipynb.

Evaluating a new Model

We have provided an implementation of the FS-Mol evaluation methodology in fs_mol.utils.eval_utils.eval_model(). This is a framework-agnostic python method, and we demonstrate how to use it for evaluating a new model in detail in notebooks/evaluation.ipynb.

Note that our baseline test scripts (fs_mol/baseline_test.py, fs_mol/maml_test.py, fs_mol/mat_test, fs_mol/multitask_test.py and fs_mol/protonet_test.py) use this method as well and can serve as examples on how to integrate per-task fine-tuning in TensorFlow (maml_test.py), fine-tuning in PyTorch (mat_test.py) and single-task training for scikit-learn models (baseline_test.py). These scripts also support the --task_list_file parameter to choose different sets of test tasks, as required.

Baseline Model Implementations

We provide implementations for three key few-shot learning methods: Multitask learning, Model-Agnostic Meta-Learning, and Prototypical Networks, as well as evaluation on the Single-Task baselines and the Molecule Attention Transformer (MAT) paper, code.

All results and associated plots are found in the baselines/ directory.

These baseline methods can be run on the FS-Mol dataset as follows:

kNNs and Random Forests -- Single Task Baselines

Our kNN and RF baselines are obtained by permitting grid-search over a industry-standard parameter set, detailed in the script baseline_test.py.

The baseline single-task evaluation can be run as follows, with a choice of kNN or randomForest model:

python fs_mol/baseline_test.py /path/to/data --model {kNN, randomForest}

Molecule Attention Transformer

The Molecule Attention Transformer (MAT) paper, code.

The Molecule Attention Transformer can be evaluated as:

python fs_mol/mat_test.py /path/to/pretrained-mat /path/to/data

GNN-MAML pre-training and evaluation

The GNN-MAML model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $8$-layer GNN with node-embedding dimension $128$. The GNN uses "Edge-MLP" message passing. The model was trained with a support set size of $16$ according to the MAML procedure Finn 2017. The hyperparameters used in the model checkpoint are default settings of maml_train.py.

The current defaults were used to train the final versions of GNN-MAML available here.

python fs_mol/maml_train.py /path/to/data 

Evaluation is run as:

python fs_mol/maml_test.py /path/to/data --trained_model /path/to/gnn-maml-checkpoint

GNN-MT pre-training and evaluation

The GNN-MT model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $10$-layer GNN with node-embedding dimension $128$. The model uses principal neighbourhood aggregation (PNA) message passing. The hyperparameters used in the model checkpoint are default settings of multitask_train.py. This method has similarities to the approach taken for the task-only training contained within Hu 2019

python fs_mol/multitask_train.py /path/to/data 

Evaluation is run as:

python fs_mol/multitask_test.py /path/to/gnn-mt-checkpoint /path/to/data

Prototypical Networks (PN) pre-training and evaluation

The prototypical networks method Snell 2017 extracts representations of support set datapoints and uses these to classify positive and negative examples. We here used the Mahalonobis distance as a metric for query point distance to class prototypes.

python fs_mol/protonet_train.py /path/to/data 

Evaluation is run as:

python fs_mol/protonet_test.py /path/to/pn-checkpoint /path/to/data

Available Model Checkpoints

We provide pre-trained models for GNN-MAML, GNN-MT and PN, these are downloadable from the links to figshare.

Model Name Description Checkpoint File
GNN-MAML Support set size 16. 8-layer GNN. Edge MLP message passing. MAML-Support16_best_validation.pkl
GNN-MT 10-layer GNN. PNA message passing multitask_best_model.pt
PN 10-layer GGN, PNA message passing. ECFP+GNN, Mahalonobis distance metric PN-Support64_best_validation.pt

Specifying, Training and Evaluating New Model Implementations

Flexible definition of few-shot models and single task models is defined as demonstrated in the range of train and test scripts in fs_mol.

We give a detailed example of how to use the abstract class AbstractTorchFSMolModel in notebooks/integrating_torch_models.ipynb to integrate a new general PyTorch model, and note that the evaluation procedure described below is demonstrated on sklearn models in fs_mol/baseline_test.py and on a Tensorflow-based GNN model in fs_mol/maml_test.py.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022