VOGUE: Try-On by StyleGAN Interpolation Optimization

Overview

VOGUE: Try-On by StyleGAN Interpolation Optimization

 	Kathleen M Lewis1,2		Srivatsan Varadharajan1		Ira Kemelmacher-Shlizerman1,3
  		1Google Research	    2MIT CSAIL	       3University of Washington

Figure 1: VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples. Bottom: pants try-on synthesized by our method. Note how our method preserves the identity of the person while allowing high detail garment try on.

Abstract

Given an image of a target person and an image of another person wearing a garment, we automatically generate the target person in the given garment. At the core of our method is a pose-conditioned StyleGAN2 latent space interpolation, which seamlessly combines the areas of interest from each image, i.e., body shape, hair, and skin color are derived from the target person, while the garment with its folds, material properties, and shape comes from the garment image. By automatically optimizing for interpolation coefficients per layer in the latent space, we can perform a seamless, yet true to source, merging of the garment and target person. Our algorithm allows for garments to deform according to the given body shape, while preserving pattern and material details. Experiments demonstrate state-of-theart photo-realistic results at high resolution (512 x 512).

VOGUE Method

We train a pose-conditioned StyleGAN2 network that outputs RGB images and segmentations.

After training our modified StyleGAN2 network, we run an optimization method to learn interpolation coefficients for each style block. These interpolation coefficients are used to combine style codes of two different images and semantically transfer a region of interest from one image to another. This method can be used for generated StyleGAN2 images or on real images by first projecting the real images into the latent space.

Figure 2: The try-on optimization setup illustrated here takes two latent codes z+1 and z+2 (representing two input images) and a pose heatmap as input into a pose-conditioned StyleGAN2 generator (gray). The generator produces the try-on image and its corresponding segmentation by interpolating between the latent codes using the interpolation-coefficients q. By minimizing the loss function over the space of interpolation coefficients, we are able to transfer garment(s) g from a garment image Ig, to the person image Ip.

Generated Image Try-On

VOGUE can transfer garments between different poses and body shapes. It preserves garment details (shape, pattern, color, texture) and person identity (hair, skin color, pose).

Shirt Try-On

With VOGUE, the same person can try on shirts of different styles (above). The identity of the person is preserved. When transferring a shorter garment or a different neckline, VOGUE is able to synthesize skin that is realistic and consistent with identity (below).


Different people can also try on the same shirt (below). The characteristics of the shirt are preserved across different poses and people.

Pants Try-On

Projected Image Try-On

Virtual try-on between two real images is possible by first projecting the two images into the StyleGAN Z+ latent space. Improving projection is an active area of research.

Shirt Try-On

Comparison with SOTA

Wang, Bochao, et al. "Toward characteristic-preserving image-based virtual try-on network." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Men, Yifang, et al. "Controllable person image synthesis with attribute-decomposed gan." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

Acknowledgements

We thank Edo Collins, Hao Peng, Jiaming Liu, Daniel Bauman, and Blake Farmer for their support of this work.



Feel free to ask any questions, open a PR if you feel something can be done differently!

🌟 Star this repository 🌟

Created by Charmve & maiwei.ai Community | Deployed on Kaggle

Owner
Wei ZHANG
I'm a Post-Bachelor in B.E. & B.A. , founder of @MaiweiAI Lab and @DeepVTuber. My research interests lie at Computer Vision and Machine Learning.
Wei ZHANG
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022