Code I use to automatically update my videos' metadata on YouTube

Overview

mCodingYouTube

This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags, etc.

mCoding YouTube channel

The code in this repository is MIT licensed, see the file named LICENSE.

Disclaimer

The code is for educational purposes, not production use. Do not run any code that you do not understand. I am not responsible if you end up deleting or otherwise irreparably damaging your YouTube account, or getting banned from YouTube/Google services by using/misusing this code.

If you do decide to play with the code, I recommend using a dummy YouTube account so that you don't put your real account in danger. Pay close attention to the amount of quota that you use in order to avoid YouTube/Google thinking you are abusing their API.

I do not condone using or modifying the code in this API to do anything that violates YouTube/Google terms of service or any applicable laws.

Official code and docs from Google/YouTube

If you would like an official set of samples for how to use the YouTube Data API in Python, see https://github.com/youtube/api-samples/tree/master/python.

The official YouTube Data API documentation (not language specific) can be found at: https://developers.google.com/youtube/v3/docs.

Trying to follow my YouTube video?

Video: I Used the YouTube API to Update My Video Descriptions

Install dependencies (execute this from the directory containing requirements.txt):

pip install -r requirements.txt

Here are the important files:

  • app_config.py: In order to avoid publishing my secret client data, I use this config to read a non-uploaded file containing the location of my secret file. If you want to modify the code to work for yourself, you can hard-code the location of your client secret file here, or use dotenv like I did.

  • youtube.py: Contains the code to make an authenticated YouTube service object. You shouldn't need to change anything in this file.

  • download_single_video_data.py: Script to download the snippet metadata to a file for a video with known video id. I recommend making a data directory and putting all your downloaded data there to avoid clutter.

  • download_my_uploads.py: Script to download the playlist item snippets for all your uploads and save each page of results to a file.

  • update_description_on_youtube.py: Functions for updating a single video description.

  • simple_prepend_to_descriptions.py: Script to load data saved using download_my_uploads.py and prepend text read from a file to all your uploaded videos by using functions from update_description_on_youtube.py in a loop.

Owner
James Murphy
I'm James Murphy, founder of mCoding. I'm interested in helping as many people learn about programming and math as possible.
James Murphy
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | įŽ€äŊ“中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021