(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

Overview

SSR

(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification"

[Paper] [Project webpage] [Video] [Slide]

teaser

The project is an extension work to SIB. If our project is helpful for your research, please consider citing :

@inproceedings{shen2021reranking,
  title={Re-ranking for image retrieval and transductive few-shot classification},
  author={Shen, Xi and Xiao, Yang and Hu, Shell Xu, and Sbai, Othman and Aubry, Mathieu},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Table of Content

1. Installation

Code is tested under Pytorch > 1.0 + Python 3.6 environment.

Please refer to image retrieval and transductive few-shot classification to download datasets.

2. Methods and Results

SSR learns updates for a similarity graph.

It decomposes the N * N similarity graph into N subgraphs where rows and columns of the matrix are ordered depending on similarities to the subgraph reference image.

The output of SSR is an improved similarity matrix.

teaser

2.1 Image retrieval

2.1.1 SSR module

Rows : the subgraph reference image (red) and the query image (green);

Columns : top retrieved images of the query image (green). These images are ordered according to the reference image (red).

teaser

2.1.2 Results

To reproduce the results on image retrieval datasets (rOxford5k, rParis6k), please refer to Image Retrieval

teaser

2.2 Transductive few-shot classification

2.2.1 SSR module

We illustrate our idea with an 1-shot-2way example:

Rows: the subgraph reference image (red) and the support set S;

Columns: the support set S and the query set Q. Both S and Q are ordered according to the reference image (red).

teaser

2.2.2 Results

To reproduce the results on few-shot datasets (CIFAR-FS, Mini-ImageNet, TieredImageNet), please refer to transductive few-shot classification

teaser

3. Acknowledgement

  • The implementation of k-reciprocal is adapted from its public code

  • The implementation of few-shot training, evaluation and synthetic gradient is adapted from SIB

4. ChangeLog

  • 21/10/29, model, evaluation + training released

5. License

This code is distributed under an MIT LICENSE.

Note that our code depends on Pytorch, and uses datasets which each have their own respective licenses that must also be followed.

Owner
xshen
Ph.D, Computer Vision, Deep Learning.
xshen
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022