Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Related tags

Deep Learningcassle
Overview

Self-Supervised Models are Continual Learners

This is the official repository for the paper:

Self-Supervised Models are Continual Learners
Enrico Fini*, Victor Turrisi*, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, Julien Mairal
CVPR 2022

Abstract: Self-supervised models have been shown to produce comparable or better visual representations than their supervised counterparts when trained offline on unlabeled data at scale. However, their efficacy is catastrophically reduced in a Continual Learning (CL) scenario where data is presented to the model sequentially. In this paper, we show that self-supervised loss functions can be seamlessly converted into distillation mechanisms for CL by adding a predictor network that maps the current state of the representations to their past state. This enables us to devise a framework for Continual self-supervised visual representation Learning that (i) significantly improves the quality of the learned representations, (ii) is compatible with several state-of-the-art self-supervised objectives, and (iii) needs little to no hyperparameter tuning. We demonstrate the effectiveness of our approach empirically by training six popular self-supervised models in various CL settings.


Overview of our method and results

NOTE: most of the code in this repository is borrowed from solo-learn

Installation

Use the following commands to create an environment and install the required packages (needs conda):

conda create --name cassle python=3.8
conda activate cassle
conda install pytorch=1.10.2 torchvision cudatoolkit=11.3 -c pytorch
pip install pytorch-lightning==1.5.4 lightning-bolts wandb sklearn einops
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda110

Remember to check your cuda version and modify the install commands accorgingly.

OPTIONAL: consider installing pillow-SIMD for faster data loading:

pip uninstall pillow
CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

Commands

Here below you can find a few example commands for running our code. The bash scripts with full training configurations for our continual and linear evaluation experiments can be found in the bash_files folder. Use our job_launcher.py to launch continual self-supervised learning experiments. We also provide example code for launching jobs with SLURM where you can pass the desired configuration for your job (bash script, data directory, number of GPUs, walltime, etc...).

NOTE: each experiment uses a different number of gpus (1 for CIFAR100, 2 for ImageNet100 and 4 for DomainNet). You can change this setting directly in the bash scripts.

Fine-tuning

CIFAR100

E.g. running Barlow Twins:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0 python job_launcher.py --script bash_files/continual/cifar/barlow_distill.sh

ImageNet100

Class-incremental

E.g. running BYOL:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/class/byol.sh

Data-incremental

E.g. running SimCLR:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/data/simclr.sh

DomainNet

E.g. running SwAV:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1,2,3 python job_launcher.py --script bash_files/continual/domainnet/swav.sh

CaSSLe

After running fine-tuning, you can also run CaSSLe by just loading the checkpoint of the first task. You will find all the checkpoints in your experiment directory (defaults to "./experiments"). Check the id of your run on WandB to make sure you are loading the correct checkpoint.

CIFAR100

E.g. running Barlow Twins + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0 python job_launcher.py --script bash_files/continual/cifar/barlow_distill.sh

ImageNet100

Class-incremental

E.g. running BYOL + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/class/byol_distill.sh

Data-incremental

E.g. running SimCLR + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/data/simclr_distill.sh

DomainNet

E.g. running SwAV + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1,2,3 python job_launcher.py --script bash_files/continual/domainnet/swav_distill.sh

Linear Evaluation

For linear evaluation you do not need the job launcher. You can simply run the scripts from bash_files/linear, e.g., for VICReg:

PRETRAINED_PATH=/path/to/last/checkpoint/ DATA_DIR=/path/to/data/dir/ bash bash_files/linear/imagenet-100/class/vicreg_linear.sh

Logging

Logging is performed with WandB. Please create an account and specify your --entity YOUR_ENTITY and --project YOUR_PROJECT in the bash scripts. For debugging, or if you do not want all the perks of WandB, you can disable logging by passing --offline in your bash scripts. After training you can always sync an offline run with the following command: wandb sync your/wandb/run/folder.

Citation

If you like our work, please cite our paper:

@inproceedings{fini2021self,
  title={Self-Supervised Models are Continual Learners},
  author={Fini, Enrico and da Costa, Victor G Turrisi and Alameda-Pineda, Xavier and Ricci, Elisa and Alahari, Karteek and Mairal, Julien},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}
Owner
Enrico Fini
PhD Student at University of Trento
Enrico Fini
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022