The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Overview

License

PointNav-VO

The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Project Page | Paper

Table of Contents

Setup

Install Dependencies

conda env create -f environment.yml

Install Habitat

The repo is tested under the following commits of habitat-lab and habitat-sim.

habitat-lab == d0db1b55be57abbacc5563dca2ca14654c545552
habitat-sim == 020041d75eaf3c70378a9ed0774b5c67b9d3ce99

Note, to align with Habitat Challenge 2020 settings (see Step 36 in the Dockerfile), when installing habitat-sim, we compiled without CUDA support as

python setup.py install --headless

There was a discrepancy between noises models in CPU and CPU versions which has now been fixed, see this issue. Therefore, to reproduce the results in the paper with our pre-trained weights, you need to use noises model of CPU-version.

Download Data

We need two datasets to enable running of this repo:

  1. Gibson scene dataset
  2. PointGoal Navigation splits, we need pointnav_gibson_v2.zip.

Please follow Habitat's instruction to download them. We assume all data is put under ./dataset with structure:

.
+-- dataset
|  +-- Gibson
|  |  +-- gibson
|  |  |  +-- Adrian.glb
|  |  |  +-- Adrian.navmesh
|  |  |  ...
|  +-- habitat_datasets
|  |  +-- pointnav
|  |  |  +-- gibson
|  |  |  |  +-- v2
|  |  |  |  |  +-- train
|  |  |  |  |  +-- val
|  |  |  |  |  +-- valmini

Reproduce

Download pretrained checkpoints of RL navigation policy and VO from this link. Put them under pretrained_ckpts with the following structure:

.
+-- pretrained_ckpts
|  +-- rl
|  |  +-- no_tune
|  |  |  +-- rl_no_tune.pth
|  |  +-- tune_vo
|  |  |  +-- rl_tune_vo.pth
|  +-- vo
|  |  +-- act_forward.pth
|  |  +-- act_left_right_inv_joint.pth

Run the following command to reproduce navigation results. On Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz and a Nvidia GeForce GTX 1080 Ti, it takes around 4.5 hours to complete evaluation on all 994 episodes with navigation policy tuned with VO.

cd /path/to/this/repo
export POINTNAV_VO_ROOT=$PWD

export NUMBA_NUM_THREADS=1 && \
export NUMBA_THREADING_LAYER=workqueue && \
conda activate pointnav-vo && \
python ${POINTNAV_VO_ROOT}/launch.py \
--repo-path ${POINTNAV_VO_ROOT} \
--n_gpus 1 \
--task-type rl \
--noise 1 \
--run-type eval \
--addr 127.0.1.1 \
--port 8338

Use VO as a Drop-in Module

We provide a class BaseRLTrainerWithVO that contains all necessary functions to compute odometry in base_trainer_with_vo.py. Specifically, you can use _compute_local_delta_states_from_vo to compute odometry based on adjacent observations. The code sturcture will be something like:

local_delta_states = _compute_local_delta_states_from_vo(prev_obs, cur_obs, action)
cur_goal = compute_goal_pos(prev_goal, local_delta_states)

To get more sense about how to use this function, please refer to challenge2020_agent.py, which is the agent we used in HabitatChallenge 2020.

Train Your Own VO

See details in TRAIN.md

Citation

Please cite the following papers if you found our model useful. Thanks!

Xiaoming Zhao, Harsh Agrawal, Dhruv Batra, and Alexander Schwing. The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation. ICCV 2021.

@inproceedings{ZhaoICCV2021,
  title={{The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation}},
  author={Xiaoming Zhao and Harsh Agrawal and Dhruv Batra and Alexander Schwing},
  booktitle={Proc. ICCV},
  year={2021},
}
Owner
Xiaoming Zhao
PhD Student @IllinoisCS
Xiaoming Zhao
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022