The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Overview

License

PointNav-VO

The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Project Page | Paper

Table of Contents

Setup

Install Dependencies

conda env create -f environment.yml

Install Habitat

The repo is tested under the following commits of habitat-lab and habitat-sim.

habitat-lab == d0db1b55be57abbacc5563dca2ca14654c545552
habitat-sim == 020041d75eaf3c70378a9ed0774b5c67b9d3ce99

Note, to align with Habitat Challenge 2020 settings (see Step 36 in the Dockerfile), when installing habitat-sim, we compiled without CUDA support as

python setup.py install --headless

There was a discrepancy between noises models in CPU and CPU versions which has now been fixed, see this issue. Therefore, to reproduce the results in the paper with our pre-trained weights, you need to use noises model of CPU-version.

Download Data

We need two datasets to enable running of this repo:

  1. Gibson scene dataset
  2. PointGoal Navigation splits, we need pointnav_gibson_v2.zip.

Please follow Habitat's instruction to download them. We assume all data is put under ./dataset with structure:

.
+-- dataset
|  +-- Gibson
|  |  +-- gibson
|  |  |  +-- Adrian.glb
|  |  |  +-- Adrian.navmesh
|  |  |  ...
|  +-- habitat_datasets
|  |  +-- pointnav
|  |  |  +-- gibson
|  |  |  |  +-- v2
|  |  |  |  |  +-- train
|  |  |  |  |  +-- val
|  |  |  |  |  +-- valmini

Reproduce

Download pretrained checkpoints of RL navigation policy and VO from this link. Put them under pretrained_ckpts with the following structure:

.
+-- pretrained_ckpts
|  +-- rl
|  |  +-- no_tune
|  |  |  +-- rl_no_tune.pth
|  |  +-- tune_vo
|  |  |  +-- rl_tune_vo.pth
|  +-- vo
|  |  +-- act_forward.pth
|  |  +-- act_left_right_inv_joint.pth

Run the following command to reproduce navigation results. On Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz and a Nvidia GeForce GTX 1080 Ti, it takes around 4.5 hours to complete evaluation on all 994 episodes with navigation policy tuned with VO.

cd /path/to/this/repo
export POINTNAV_VO_ROOT=$PWD

export NUMBA_NUM_THREADS=1 && \
export NUMBA_THREADING_LAYER=workqueue && \
conda activate pointnav-vo && \
python ${POINTNAV_VO_ROOT}/launch.py \
--repo-path ${POINTNAV_VO_ROOT} \
--n_gpus 1 \
--task-type rl \
--noise 1 \
--run-type eval \
--addr 127.0.1.1 \
--port 8338

Use VO as a Drop-in Module

We provide a class BaseRLTrainerWithVO that contains all necessary functions to compute odometry in base_trainer_with_vo.py. Specifically, you can use _compute_local_delta_states_from_vo to compute odometry based on adjacent observations. The code sturcture will be something like:

local_delta_states = _compute_local_delta_states_from_vo(prev_obs, cur_obs, action)
cur_goal = compute_goal_pos(prev_goal, local_delta_states)

To get more sense about how to use this function, please refer to challenge2020_agent.py, which is the agent we used in HabitatChallenge 2020.

Train Your Own VO

See details in TRAIN.md

Citation

Please cite the following papers if you found our model useful. Thanks!

Xiaoming Zhao, Harsh Agrawal, Dhruv Batra, and Alexander Schwing. The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation. ICCV 2021.

@inproceedings{ZhaoICCV2021,
  title={{The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation}},
  author={Xiaoming Zhao and Harsh Agrawal and Dhruv Batra and Alexander Schwing},
  booktitle={Proc. ICCV},
  year={2021},
}
Owner
Xiaoming Zhao
PhD Student @IllinoisCS
Xiaoming Zhao
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022