The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Overview

License

PointNav-VO

The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

Project Page | Paper

Table of Contents

Setup

Install Dependencies

conda env create -f environment.yml

Install Habitat

The repo is tested under the following commits of habitat-lab and habitat-sim.

habitat-lab == d0db1b55be57abbacc5563dca2ca14654c545552
habitat-sim == 020041d75eaf3c70378a9ed0774b5c67b9d3ce99

Note, to align with Habitat Challenge 2020 settings (see Step 36 in the Dockerfile), when installing habitat-sim, we compiled without CUDA support as

python setup.py install --headless

There was a discrepancy between noises models in CPU and CPU versions which has now been fixed, see this issue. Therefore, to reproduce the results in the paper with our pre-trained weights, you need to use noises model of CPU-version.

Download Data

We need two datasets to enable running of this repo:

  1. Gibson scene dataset
  2. PointGoal Navigation splits, we need pointnav_gibson_v2.zip.

Please follow Habitat's instruction to download them. We assume all data is put under ./dataset with structure:

.
+-- dataset
|  +-- Gibson
|  |  +-- gibson
|  |  |  +-- Adrian.glb
|  |  |  +-- Adrian.navmesh
|  |  |  ...
|  +-- habitat_datasets
|  |  +-- pointnav
|  |  |  +-- gibson
|  |  |  |  +-- v2
|  |  |  |  |  +-- train
|  |  |  |  |  +-- val
|  |  |  |  |  +-- valmini

Reproduce

Download pretrained checkpoints of RL navigation policy and VO from this link. Put them under pretrained_ckpts with the following structure:

.
+-- pretrained_ckpts
|  +-- rl
|  |  +-- no_tune
|  |  |  +-- rl_no_tune.pth
|  |  +-- tune_vo
|  |  |  +-- rl_tune_vo.pth
|  +-- vo
|  |  +-- act_forward.pth
|  |  +-- act_left_right_inv_joint.pth

Run the following command to reproduce navigation results. On Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz and a Nvidia GeForce GTX 1080 Ti, it takes around 4.5 hours to complete evaluation on all 994 episodes with navigation policy tuned with VO.

cd /path/to/this/repo
export POINTNAV_VO_ROOT=$PWD

export NUMBA_NUM_THREADS=1 && \
export NUMBA_THREADING_LAYER=workqueue && \
conda activate pointnav-vo && \
python ${POINTNAV_VO_ROOT}/launch.py \
--repo-path ${POINTNAV_VO_ROOT} \
--n_gpus 1 \
--task-type rl \
--noise 1 \
--run-type eval \
--addr 127.0.1.1 \
--port 8338

Use VO as a Drop-in Module

We provide a class BaseRLTrainerWithVO that contains all necessary functions to compute odometry in base_trainer_with_vo.py. Specifically, you can use _compute_local_delta_states_from_vo to compute odometry based on adjacent observations. The code sturcture will be something like:

local_delta_states = _compute_local_delta_states_from_vo(prev_obs, cur_obs, action)
cur_goal = compute_goal_pos(prev_goal, local_delta_states)

To get more sense about how to use this function, please refer to challenge2020_agent.py, which is the agent we used in HabitatChallenge 2020.

Train Your Own VO

See details in TRAIN.md

Citation

Please cite the following papers if you found our model useful. Thanks!

Xiaoming Zhao, Harsh Agrawal, Dhruv Batra, and Alexander Schwing. The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation. ICCV 2021.

@inproceedings{ZhaoICCV2021,
  title={{The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation}},
  author={Xiaoming Zhao and Harsh Agrawal and Dhruv Batra and Alexander Schwing},
  booktitle={Proc. ICCV},
  year={2021},
}
Owner
Xiaoming Zhao
PhD Student @IllinoisCS
Xiaoming Zhao
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022