This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Overview

Deep learning for Earth Observation

http://www.onera.fr/en/dtim https://www-obelix.irisa.fr/

This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning.

We build on the SegNet architecture (Badrinarayanan et al., 2015) to provide a semantic labeling network able to perform dense prediction on remote sensing data. The implementation uses the PyTorch framework.

Motivation

Earth Observation consists in visualizing and understanding our planet thanks to airborne and satellite data. Thanks to the release of large amounts of both satellite (e.g. Sentinel and Landsat) and airborne images, Earth Observation entered into the Big Data era. Many applications could benefit from automatic analysis of those datasets : cartography, urban planning, traffic analysis, biomass estimation and so on. Therefore, lots of progresses have been made to use machine learning to help us have a better understanding of our Earth Observation data.

In this work, we show that deep learning allows a computer to parse and classify objects in an image and can be used for automatical cartography from remote sensing data. Especially, we provide examples of deep fully convolutional networks that can be trained for semantic labeling for airborne pictures of urban areas.

Content

Deep networks

We provide a deep neural network based on the SegNet architecture for semantic labeling of Earth Observation images.

All the pre-trained weights can be found on the OBELIX team website (backup link.

Data

Our example models are trained on the ISPRS Vaihingen dataset and ISPRS Potsdam dataset. We use the IRRG tiles (8bit format) and we build 8bit composite images using the DSM, NDSM and NDVI.

You can either use our script from the OSM folder (based on the Maperitive software) to generate OpenStreetMap rasters from the images, or download the OSM tiles from Potsdam here.

The nDSM for the Vaihingen dataset is available here (courtesy of Markus Gerke, see also his webpage). The nDSM for the Potsdam dataset is available here.

How to start

Just run the SegNet_PyTorch_v2.ipynb notebook using Jupyter!

Requirements

Find the right version for your setup and install PyTorch.

Then, you can use pip or any package manager to install the packages listed in requirements.txt, e.g. by using:

pip install -r requirements.txt

References

If you use this work for your projects, please take the time to cite our ISPRS Journal paper :

https://arxiv.org/abs/1711.08681 Nicolas Audebert, Bertrand Le Saux and Sébastien Lefèvre, Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks, ISPRS Journal of Photogrammetry and Remote Sensing, 2017.

@article{audebert_beyond_2017,
title = "Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks",
journal = "ISPRS Journal of Photogrammetry and Remote Sensing",
year = "2017",
issn = "0924-2716",
doi = "https://doi.org/10.1016/j.isprsjprs.2017.11.011",
author = "Nicolas Audebert and Bertrand Le Saux and Sébastien Lefèvre",
keywords = "Deep learning, Remote sensing, Semantic mapping, Data fusion"
}

License

Code (scripts and Jupyter notebooks) are released under the GPLv3 license for non-commercial and research purposes only. For commercial purposes, please contact the authors.

https://creativecommons.org/licenses/by-nc-sa/3.0/ The network weights are released under Creative-Commons BY-NC-SA. For commercial purposes, please contact the authors.

See LICENSE.md for more details.

Acknowledgements

This work has been conducted at ONERA (DTIM) and IRISA (OBELIX team), with the support of the joint Total-ONERA research project NAOMI.

The Vaihingen data set was provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).

Say Thanks!

Owner
Nicolas Audebert
Assistant professor in Computer Science. Resarcher on computer vision and deep learning.
Nicolas Audebert
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023