Projecting interval uncertainty through the discrete Fourier transform

Overview

Projecting interval uncertainty through the discrete Fourier transform

This repository provides a method that can propagate interval uncertainty through the discrete Fourier transform while yielding the exact bounds on the Fourier amplitude and Power Spectral Density function. The algorithm applies to real sequences of intervals. The method allows technical analysts to project interval uncertainty present in the time signals to their Fourier amplitude without making assumptions about the error distribution at each time step. Thus, it is possible to calculate and analyse system responses in the frequency domain without conducting extensive Monte Carlo simulations in the time domain. The applicability of this method in practice is demonstrated by a technical application.

Disclaimer: This code was developed for illustration purposes and for proof-of-concept. Thus this code is not optimized for large-scale applications. An optimized version of the code is currently under development.

References

De Angelis, M.; Behrendt, M.; Comerford, L.; Zhang, Y.; Beer, M. (2021): Forward interval propagation through the discrete Fourier transform, The 9th international workshop on Reliable Engineering Computing, arXiv:2012.09778.

Installation

Clone the git repository on your machine, cd to the repository, open a Python3 interpreter and import the interval Fourier transform ans other useful packages

from fourier.transform import transform as intervalDFT
from fourier.application import application as app
from fourier.number import number as int_num
import numpy
from numpy import (arange, cos, exp, linspace, mean, pi,  sin, zeros) 
from matplotlib import pyplot, cm

Signal generation and interval DFT

At first time and frequency parameters and an analytical PSD function are needed to model a stochastic process.

Define parameters

wu = 2.2975 # upper cut-off frequency
T = 350 # total time length

dt = 2*pi /(2*wu) # timestep size
dw = 2*pi / T # frequency step size

t = numpy.arange(0,T,dt) # time vector
w = numpy.arange(0,wu,dw) # frequency vector

JONSWAP power spectrum

The JONSWAP power spectrum is utilised to generate stochastic processes. The required parameters are:

alpha = 0.0081 # spectral energy parameter
w_p = 0.7 # peak frequency
gamma = 3.3 # peak enhancement factor
sigma1 = 0.07 # spectral width parameter for w <= w_p
sigma2 = 0.09 # spectral width parameter for w > w_p
spectrum = app.jonswap_spectrum(w,alpha,w_p,gamma,sigma1,sigma2)

Plot the JONSWAP power spectrum

ax = app.plot_line(w,spectrum,figsize=(18,6),xlabel=r'#$x$',ylabel='$x$',color=None,lw=1,title='JONSWAP power spectrum',ax=None,label=None)
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)

fig

Generate time signal and intervalize it

To generate a stochastic process the spectral representation method is utilised. This signal is then intervalized with interval uncertainty ±0.1. Both signals are plotted.

sea_waves = app.stochastic_process(spectrum,w,t) 
pm = 0.1
sea_waves_interval = intervalDFT.intervalize(sea_waves, pm)

ax = app.plot_line(t,sea_waves,figsize=(18,6),xlabel='Time [s]',ylabel='Wave height [m]',color='rebeccapurple',lw=1,title='Signal from stationary power spectrum',ax=None,label=None)
sea_waves_interval.plot(xlabel='Time [s]',ylabel='Wave height [m]',title=r'Signal with $\pm$ '+str(pm)+' information gaps (intervals)')

fig fig

Compute the Fourier transforms

Compute the Fourier transform of the crisp signal and the interval Fourier transform for the interval signal with the selective method and the interval method. Also compute the periodogram of respective (bounded) Fourier amplitudes.

FA = intervalDFT.Fourier_amplitude(sea_waves)
BI,BS = intervalDFT.compute_amplitude_bounds(sea_waves_interval)
BI.insert(0,int_num.Interval(0,0))
BS.insert(0,int_num.Interval(0,0))

FA = app.periodogram(FA, t, dt)
BI = app.periodogram(BI, t, dt)
BS = app.periodogram(BS, t, dt)

Plot the interval Fourier transform

The amplitude of the crisp signal and both bounded Fourier amplituted are plotted.

ax = app.plot_line(w,FA,figsize=(18,6),xlabel=r'#$x$',ylabel=r'$x$',color=None,lw=1,title=None,ax=None,label='Interval uncertainty: $\pm$ '+str(pm)+'')
app.plot_bounds(x=w,bounds=BI,color='cornflowerblue',alpha=0.4,ax=ax)
app.plot_bounds(x=w,bounds=BS,color='orangered',alpha=0.6,ax=ax)
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.tick_params(direction='out', length=6, width=2, labelsize=14)

fig

Application to a SDOF system

The system under investigation is a offshore wind turbine simplified to a SDOF system. The parameters are set to

R = 3 # outer radius
r = 2.8 # inner radius
h_pile = 60 # height
rho_steel = 7800 # density of steel
c = 1e5 # stiffness
k = 1e6 # damping coefficient

Get the natural frequency w0 and the damping ratio xi

w0,xi = app.wind_turbine(R,r,h_pile,rho_steel,c,k)

The response can be obtained by pushing the (intervalised) signal through the frequency response function

freq_response_precise = app.frequency_response(w,FA,w0,xi)
freq_response_BI_low,freq_response_BI_high = app.frequency_response_interval(w,BI,w0,xi)
freq_response_BS_low,freq_response_BS_high = app.frequency_response_interval(w,BS,w0,xi)

Those responses can be plotted

ax = app.plot_line(w,freq_response_precise,figsize=(18,6),xlabel=r'#$x$',ylabel=r'$x$',color=None,lw=1,title=None,ax=None,label=None)
ax.fill_between(x=w,y1=freq_response_BI_low,y2=freq_response_BI_high, alpha=0.4, label='Interval', edgecolor='blue', lw=2, color='cornflowerblue')
ax.fill_between(x=w,y1=freq_response_BS_low,y2=freq_response_BS_high, alpha=0.6, label='Selective', edgecolor='red', lw=2, color='orangered')

ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.set_title(r'Interval uncertainty: $\pm$ '+str(pm)+'', fontsize=20)

ax.tick_params(direction='out', length=6, width=2, labelsize=14)
_=ax.set_xlim([0.5, 1.1])

fig

Comparison with Monte Carlo

In this section it is illustrated how severe interval uncertainty is underestimated by Monte Carlo. To show this, a signal with interval uncertainty ±0.5 is utilised and plotted.

pm = 0.5
sea_waves_interval_05 = intervalDFT.intervalize(sea_waves, pm)
sea_waves_interval_05.plot(xlabel='Time [s]',ylabel='Wave height [m]',title=r'Signal with $\pm$ '+str(pm)+' information gaps (intervals)')

fig

Generate some random signals between the bounds. All signals which are within or on the bounds are possible.

RAND_SIGNALS = sea_waves_interval_05.rand(N=20) # this picks out N (inner) random signals within the bounds

fig,ax = intervalDFT.subplots(figsize=(16,8))
for rs in RAND_SIGNALS:
    intervalDFT.plot_signal(rs,ax=ax)
sea_waves_interval_05.plot(ax=ax)
ax.grid()
_=ax.set_xlim(0,55) # underscore here is used to suppress the output of this line

fig

Computing the Fourier amplitude bounds and the periodogram of the interval signal

BI,BS = intervalDFT.compute_amplitude_bounds(sea_waves_interval_05)
BI.insert(0,int_num.Interval(0,0))
BS.insert(0,int_num.Interval(0,0))

BI = app.periodogram(BI, t, dt)
BS = app.periodogram(BS, t, dt) 

Plotting the bounds of the Fourier amplitude in comparison to the resulting bounds obtained by Monte Carlo

BI_low=[ai.lo() for ai in BI]
BI_high=[ai.hi() for ai in BI]
BS_low=[ai.lo() for ai in BS]
BS_high=[ai.hi() for ai in BS]

fig = pyplot.figure(figsize=(18,6))
ax = fig.subplots()
ax.grid()
ax.fill_between(x=w,y1=BI_low,y2=BI_high, alpha=0.4, label='Interval', edgecolor='blue', lw=2, color='cornflowerblue')
ax.fill_between(x=w,y1=BS_low,y2=BS_high, alpha=0.6, label='Selective', edgecolor='red', lw=2, color='orangered')

n_MC = 10
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    #intervalDFT.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='palegreen',lw=1,title=None,ax=ax,label=None) 
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#d7f4d7',lw=1,title=None,ax=ax,label=None) 

ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
ax.set_title(r'Interval uncertainty: $\pm$ '+str(pm)+'', fontsize=20)

ax.tick_params(direction='out', length=6, width=2, labelsize=14)  

fig

Which increasing sample size, the range within the bounds of the interval signal is better covered. However, even a very high sample size is insufficient to get close to the bounds obtained by the interval DFT.

fig = pyplot.figure(figsize=(18,6))
ax = fig.subplots()
ax.grid()

n_MC = 1000
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#7cc47c',lw=1,title=None,ax=ax,label=None) 
    
n_MC = 100
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#a7d9a7',lw=1,title=None,ax=ax,label=None) 
    
n_MC = 10
for x in range(n_MC):
    FX = intervalDFT.Fourier_amplitude(sea_waves_interval_05.rand())
    FX = app.periodogram(FX, t, dt)
    app.plot_line(w,FX,figsize=None,xlabel=r'#$x$',ylabel=r'$x$',color='#d7f4d7',lw=1,title=None,ax=ax,label=None) 
    
ax.set_xlabel('Frequency [rad/s]',fontsize=20)
ax.set_ylabel('Power Spectral Density [m$^2$s]',fontsize=20)
_=ax.set_title('Bounds estimated by MC', fontsize=20) 

fig

Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022