Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Related tags

Deep Learningsemco
Overview

SemCo

The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training (appearing in CVPR2021)

SemCo Conceptual Diagram

Install Dependencies

  • Create a new environment and install dependencies using pip install -r requirements.txt
  • Install apex to enable automatic mixed precision training (AMP).
git clone https://github.com/NVIDIA/apex
cd apex
python setup.py install --cpp_ext --cuda_ext

Note: Installing apex is optional, if you don't want to implement amp, you can simply pass --no_amp command line argument to the launcher.

Dataset

We use a standard directory structure for all our datasets to enable running the code on any dataset of choice without the need to edit the dataloaders. The datasets directory follow the below structure (only shown for cifar100 but is the same for all other datasets):

datasets
└───cifar100
   └───train
       │   <image1>
       │   <image2>
       │   ...
   └───test
       │   <image1-test>
       │   <image2-test>
       │   ...
   └───labels
       │   labels_train.feather
       │   labels_test.feather

An example of the above directory structure for cifar100 can be found here.

To preprocess a generic dataset into the above format, you can refer to utils/utils.py for several examples.

To configure the datasets directory path, you can either set the environment variable SEMCO_DATA_PATH or pass a command line argument --dataset-path to the launcher. (e.g. export SEMCO_DATA_PATH=/home/data). Note that this path references the parent datasets directory which contains the different sub directories for the individual datasets (e.g. cifar100, mini-imagenet, etc.)

Label Semantics Embeddings

SemCo expects a prior representation of all class labels via a semantic embedding for each class name. In our experiments, we use embeddings obtained from ConceptNet knowledge graph which contains a total of ~550K term embeddings. SemCo uses a matching criteria to find the best embedding for each of the class labels. Alternatively, you can use class attributes as the prior (like we did for CUB200 dataset), so you can build your own semantic dictionary.

To run experiments, please download the semantic embedding file here and set the path to the downloaded file either via SEMCO_WV_PATH environment variable or --word-vec-path command line argument. (e.g. export SEMCO_WV_PATH=/home/inas0003/data/numberbatch-en-19.08_128D.dict.pkl

Defining the Splits

For each of the experiments, you will need to specify to the launcher 4 command line arguments:

  • --dataset-name: denoting the dataset directory name (e.g. cifar100)
  • --train-split-pickle: path to pickle file with training split
  • --valid-split-pickle: (optional) path to pickle file with validation/test split (by default contains all the files in the test folder)
  • --classes-pickle: (optional) path to pickle file with list of class names

To obtain the three pickle files for any dataset, you can use generate_tst_pkls.py script specifying the dataset name and the number of instances per label and optionally a random seed. Example as follows:

python generate_tst_pkls.py --dataset-name cifar100 --instances-per-label 10 --random-seed 000 --output-path splits

The above will generate a train split with 10 images per class using a random seed of 000 together with the class names and the validation split containing all the files placed in the test folder. This can be tweaked by editing the python script.

Training the model

To train the model on cifar100 with 40 labeled samples, you can run the script:

    $ python launch_semco.py --dataset-name cifar100 --train-split-pickle splits/cifar100_labelled_data_40_seed123.pkl --model_backbone=wres --wres-k=2

or without amp

    $ python launch_semco.py --dataset-name cifar100 --train-split-pickle splits/cifar100_labelled_data_40_seed123.pkl --model_backbone=wres --wres-k=2 --no_amp

Similary to train the model on mini_imagenet with 400 labeled samples, you can run the script:

    $  python launch_semco.py --dataset-name mini_imagenet --train-split-pickle testing/mini_imagenet_labelled_data_40_seed456.pkl --model_backbone=resnet18 --im-size=84 --cropsize=84 
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022