Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Related tags

Deep Learningsemco
Overview

SemCo

The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training (appearing in CVPR2021)

SemCo Conceptual Diagram

Install Dependencies

  • Create a new environment and install dependencies using pip install -r requirements.txt
  • Install apex to enable automatic mixed precision training (AMP).
git clone https://github.com/NVIDIA/apex
cd apex
python setup.py install --cpp_ext --cuda_ext

Note: Installing apex is optional, if you don't want to implement amp, you can simply pass --no_amp command line argument to the launcher.

Dataset

We use a standard directory structure for all our datasets to enable running the code on any dataset of choice without the need to edit the dataloaders. The datasets directory follow the below structure (only shown for cifar100 but is the same for all other datasets):

datasets
└───cifar100
   └───train
       │   <image1>
       │   <image2>
       │   ...
   └───test
       │   <image1-test>
       │   <image2-test>
       │   ...
   └───labels
       │   labels_train.feather
       │   labels_test.feather

An example of the above directory structure for cifar100 can be found here.

To preprocess a generic dataset into the above format, you can refer to utils/utils.py for several examples.

To configure the datasets directory path, you can either set the environment variable SEMCO_DATA_PATH or pass a command line argument --dataset-path to the launcher. (e.g. export SEMCO_DATA_PATH=/home/data). Note that this path references the parent datasets directory which contains the different sub directories for the individual datasets (e.g. cifar100, mini-imagenet, etc.)

Label Semantics Embeddings

SemCo expects a prior representation of all class labels via a semantic embedding for each class name. In our experiments, we use embeddings obtained from ConceptNet knowledge graph which contains a total of ~550K term embeddings. SemCo uses a matching criteria to find the best embedding for each of the class labels. Alternatively, you can use class attributes as the prior (like we did for CUB200 dataset), so you can build your own semantic dictionary.

To run experiments, please download the semantic embedding file here and set the path to the downloaded file either via SEMCO_WV_PATH environment variable or --word-vec-path command line argument. (e.g. export SEMCO_WV_PATH=/home/inas0003/data/numberbatch-en-19.08_128D.dict.pkl

Defining the Splits

For each of the experiments, you will need to specify to the launcher 4 command line arguments:

  • --dataset-name: denoting the dataset directory name (e.g. cifar100)
  • --train-split-pickle: path to pickle file with training split
  • --valid-split-pickle: (optional) path to pickle file with validation/test split (by default contains all the files in the test folder)
  • --classes-pickle: (optional) path to pickle file with list of class names

To obtain the three pickle files for any dataset, you can use generate_tst_pkls.py script specifying the dataset name and the number of instances per label and optionally a random seed. Example as follows:

python generate_tst_pkls.py --dataset-name cifar100 --instances-per-label 10 --random-seed 000 --output-path splits

The above will generate a train split with 10 images per class using a random seed of 000 together with the class names and the validation split containing all the files placed in the test folder. This can be tweaked by editing the python script.

Training the model

To train the model on cifar100 with 40 labeled samples, you can run the script:

    $ python launch_semco.py --dataset-name cifar100 --train-split-pickle splits/cifar100_labelled_data_40_seed123.pkl --model_backbone=wres --wres-k=2

or without amp

    $ python launch_semco.py --dataset-name cifar100 --train-split-pickle splits/cifar100_labelled_data_40_seed123.pkl --model_backbone=wres --wres-k=2 --no_amp

Similary to train the model on mini_imagenet with 400 labeled samples, you can run the script:

    $  python launch_semco.py --dataset-name mini_imagenet --train-split-pickle testing/mini_imagenet_labelled_data_40_seed456.pkl --model_backbone=resnet18 --im-size=84 --cropsize=84 
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022