Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Overview

Meta-SparseINR

Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, Namhoon Lee, and Jinwoo Shin.

TL;DR: We develop a scalable method to learn sparse neural representations for a large set of signals.

Illustrations of (a) an implicit neural representation, (b) the standard pruning algorithm that prunes and retrains the model for each signal considered, and (c) the proposed Meta-SparseINR procedure to find a sparse initial INR, which can be trained further to fit each signal.

1. Requirements

conda create -n inrprune python=3.7
conda activate inrprune

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

pip install torchmeta
pip install imageio einops tensorboardX

Datasets

  • Download Imagenette and SDF file from the following page:
  • One should locate the dataset into /data folder

2. Training

Training option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}

Meta-SparseINR (ours)

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (magnitude pruning)
python main.py --exp metaprune --epoch 30000 --pruner MP --amount 0.2 --data <DATASET>

Random Pruning

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (random pruning)
python main.py --exp metaprune --epoch 30000 --pruner RP --amount 0.2 --data <DATASET>

Dense-Narrow

# Train dense model with a given width

# Shell script style
widthlist="230 206 184 164 148 132 118 106 94 84 76 68 60 54 48 44 38 34 32 28"
for width in $widthlist
do
    python main.py --exp meta_baseline --epoch 150000 --data <DATASET> --width $width --id width_$width
done

3. Evaluation

Evaluation option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}
  • <OPT_TYPE>: {default,two_step_sgd}, default denotes adam optimizer with 100 steps.

We assume all checkpoints are trained.

Meta-SparseINR (ours)

python eval.py --exp prune --pruner MP --data <DATASET> --opt_type <OPT_TYPE>

Baselines

# Random pruning
python eval.py --exp prune --pruner RP --data <DATASET> --opt_type <OPT_TYPE>

# Dense-Narrow
python eval.py --exp dense_narrow --data <DATASET> --opt_type <OPT_TYPE>

# MAML + One-Shot
python eval.py --exp one_shot --data <DATASET> --opt_type default

# MAML + IMP
python eval.py --exp imp --data <DATASET> --opt_type default

# Scratch
python eval.py --exp scratch --data <DATASET> --opt_type <OPT_TYPE>

4. Experimental Results

Citation

@inproceedings{lee2021meta,
  title={Meta-learning Sparse Implicit Neural Representations},
  author={Jaeho Lee and Jihoon Tack and Namhoon Lee and Jinwoo Shin},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Reference

Owner
Jaeho Lee
Postdoctoral researcher at KAIST.
Jaeho Lee
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022