Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

Overview

EMS-COLS-recourse

Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

Folder structure:

  • data folder contains raw and final preprocessed data, along with the pre-processing script.
  • Src folder contain the code for our method.
  • trained_model contains the trained black box model checkpoint.

Making the environment

conda create -n rec_gen python=3.8.1
conda activate rec_gen
pip install -r requirements.txt

Steps for running experiments.

change current working directory to src

cd ./src/
  1. Run data_io.py to dump mcmc cost samples.
python ./utils/data_io.py --save_data --data_name adult_binary --dump_negative_data --num_mcmc 1000

python ./utils/data_io.py --save_data --data_name compas_binary --dump_negative_data --num_mcmc 1000
  1. run main experiments on COLS and P-COLS.
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_main --budget 5000
python run.py --data_name compas_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_main --budget 5000

python run.py --data_name adult_binary --num_mcmc 1000 --model pls --num_cfs 10 --project_name exp_main --budget 5000
python run.py --data_name compas_binary --num_mcmc 1000 --model pls --num_cfs 10 --project_name exp_main --budget 5000
  1. Run ablation Experiments
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval cost
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval cost_simple
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval proximity
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval sparsity
python run.py --data_name adult_binary --num_mcmc 1000 --model ls --num_cfs 10 --project_name exp_ablation --budget 3000 --eval diversity
  1. Run experiments with budget
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 500
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 1000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 2000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 3000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 5000
python run.py --data_name adult_binary --model ls --num_cfs 10 --num_users 100 --project_name exp_budget --budget 10000
  1. Run experiments with number of counterfactuals
python run.py --data_name adult_binary --model model_name --num_cfs 1 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 2 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 3 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 5 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 10 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 20 --num_users 100 --project_name exp_cfs --budget 5000
python run.py --data_name adult_binary --model model_name --num_cfs 30 --num_users 100 --project_name exp_cfs --budget 5000
  1. Experiment with respect to Monte Carlo samples
  • Run these commands for different num_mcmc values. Default set to 5 in commands.
python ./utils/data_io.py --save_data --data_name adult_binary --dump_negative_data --num_mcmc 5

python run.py --data_name adult_binary --num_mcmc 5 --model model_name --num_cfs 10 --project_name exp_mcmc --budget 5000 --num_users 100

To train a new blackbox model

  • Run this right after preprocessing the data.
python train_model.py --data_name adult --max_epochs 1000 --check_val_every_n_epoch=1 --learning_rate=0.0001
Owner
Prateek Yadav
Prateek Yadav
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022