Semantic Segmentation in Pytorch

Related tags

Deep Learningsemseg
Overview

PyTorch Semantic Segmentation

Introduction

This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to use for training and testing on various datasets. The codebase mainly uses ResNet50/101/152 as backbone and can be easily adapted to other basic classification structures. Implemented networks including PSPNet and PSANet, which ranked 1st places in ImageNet Scene Parsing Challenge 2016 @ECCV16, LSUN Semantic Segmentation Challenge 2017 @CVPR17 and WAD Drivable Area Segmentation Challenge 2018 @CVPR18. Sample experimented datasets are ADE20K, PASCAL VOC 2012 and Cityscapes.

Update

  • 2020.05.15: Branch master, use official nn.SyncBatchNorm, only multiprocessing training is supported, tested with pytorch 1.4.0.
  • 2019.05.29: Branch 1.0.0, both multithreading training (nn.DataParallel) and multiprocessing training (nn.parallel.DistributedDataParallel) (recommended) are supported. And the later one is much faster. Use syncbn from EncNet and apex, tested with pytorch 1.0.0.

Usage

  1. Highlight:

  2. Requirement:

    • Hardware: 4-8 GPUs (better with >=11G GPU memory)
    • Software: PyTorch>=1.1.0, Python3, tensorboardX,
  3. Clone the repository:

    git clone https://github.com/hszhao/semseg.git
  4. Train:

    • Download related datasets and symlink the paths to them as follows (you can alternatively modify the relevant paths specified in folder config):

      cd semseg
      mkdir -p dataset
      ln -s /path_to_ade20k_dataset dataset/ade20k
      
    • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization. Remember to use the right dataset format detailed in FAQ.md.

    • Specify the gpu used in config then do training:

      sh tool/train.sh ade20k pspnet50
    • If you are using SLURM for nodes manager, uncomment lines in train.sh and then do training:

      sbatch tool/train.sh ade20k pspnet50
  5. Test:

    • Download trained segmentation models and put them under folder specified in config or modify the specified paths.

    • For full testing (get listed performance):

      sh tool/test.sh ade20k pspnet50
    • Quick demo on one image:

      PYTHONPATH=./ python tool/demo.py --config=config/ade20k/ade20k_pspnet50.yaml --image=figure/demo/ADE_val_00001515.jpg TEST.scales '[1.0]'
  6. Visualization: tensorboardX incorporated for better visualization.

    tensorboard --logdir=exp/ade20k
  7. Other:

    • Resources: GoogleDrive LINK contains shared models, visual predictions and data lists.
    • Models: ImageNet pre-trained models and trained segmentation models can be accessed. Note that our ImageNet pretrained models are slightly different from original ResNet implementation in the beginning part.
    • Predictions: Visual predictions of several models can be accessed.
    • Datasets: attributes (names and colors) are in folder dataset and some sample lists can be accessed.
    • Some FAQs: FAQ.md.
    • Former video predictions: high accuracy -- PSPNet, PSANet; high efficiency -- ICNet.

Performance

Description: mIoU/mAcc/aAcc stands for mean IoU, mean accuracy of each class and all pixel accuracy respectively. ss denotes single scale testing and ms indicates multi-scale testing. Training time is measured on a sever with 8 GeForce RTX 2080 Ti. General parameters cross different datasets are listed below:

  • Train Parameters: sync_bn(True), scale_min(0.5), scale_max(2.0), rotate_min(-10), rotate_max(10), zoom_factor(8), ignore_label(255), aux_weight(0.4), batch_size(16), base_lr(1e-2), power(0.9), momentum(0.9), weight_decay(1e-4).
  • Test Parameters: ignore_label(255), scales(single: [1.0], multiple: [0.5 0.75 1.0 1.25 1.5 1.75]).
  1. ADE20K: Train Parameters: classes(150), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(100). Test Parameters: classes(150), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train (20210 images) set and test on val (2000 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.4189/0.5227/0.8039. 0.4284/0.5266/0.8106. 14h
    PSANet50 0.4229/0.5307/0.8032. 0.4305/0.5312/0.8101. 14h
    PSPNet101 0.4310/0.5375/0.8107. 0.4415/0.5426/0.8172. 20h
    PSANet101 0.4337/0.5385/0.8102. 0.4414/0.5392/0.8170. 20h
  2. PSACAL VOC 2012: Train Parameters: classes(21), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(50). Test Parameters: classes(21), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train_aug (10582 images) set and test on val (1449 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7705/0.8513/0.9489. 0.7802/0.8580/0.9513. 3.3h
    PSANet50 0.7725/0.8569/0.9491. 0.7787/0.8606/0.9508. 3.3h
    PSPNet101 0.7907/0.8636/0.9534. 0.7963/0.8677/0.9550. 5h
    PSANet101 0.7870/0.8642/0.9528. 0.7966/0.8696/0.9549. 5h
  3. Cityscapes: Train Parameters: classes(19), train_h(713/709-PSP/A), train_w(713/709-PSP/A), epochs(200). Test Parameters: classes(19), test_h(713/709-PSP/A), test_w(713/709-PSP/A), base_size(2048).

    • Setting: train on fine_train (2975 images) set and test on fine_val (500 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7730/0.8431/0.9597. 0.7838/0.8486/0.9617. 7h
    PSANet50 0.7745/0.8461/0.9600. 0.7818/0.8487/0.9622. 7.5h
    PSPNet101 0.7863/0.8577/0.9614. 0.7929/0.8591/0.9638. 10h
    PSANet101 0.7842/0.8599/0.9621. 0.7940/0.8631/0.9644. 10.5h

Citation

If you find the code or trained models useful, please consider citing:

@misc{semseg2019,
  author={Zhao, Hengshuang},
  title={semseg},
  howpublished={\url{https://github.com/hszhao/semseg}},
  year={2019}
}
@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}
@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Question

Some FAQ.md collected. You are welcome to send pull requests or give some advices. Contact information: hengshuangzhao at gmail.com.

Owner
Hengshuang Zhao
Hengshuang Zhao
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022