Semantic Segmentation in Pytorch

Related tags

Deep Learningsemseg
Overview

PyTorch Semantic Segmentation

Introduction

This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to use for training and testing on various datasets. The codebase mainly uses ResNet50/101/152 as backbone and can be easily adapted to other basic classification structures. Implemented networks including PSPNet and PSANet, which ranked 1st places in ImageNet Scene Parsing Challenge 2016 @ECCV16, LSUN Semantic Segmentation Challenge 2017 @CVPR17 and WAD Drivable Area Segmentation Challenge 2018 @CVPR18. Sample experimented datasets are ADE20K, PASCAL VOC 2012 and Cityscapes.

Update

  • 2020.05.15: Branch master, use official nn.SyncBatchNorm, only multiprocessing training is supported, tested with pytorch 1.4.0.
  • 2019.05.29: Branch 1.0.0, both multithreading training (nn.DataParallel) and multiprocessing training (nn.parallel.DistributedDataParallel) (recommended) are supported. And the later one is much faster. Use syncbn from EncNet and apex, tested with pytorch 1.0.0.

Usage

  1. Highlight:

  2. Requirement:

    • Hardware: 4-8 GPUs (better with >=11G GPU memory)
    • Software: PyTorch>=1.1.0, Python3, tensorboardX,
  3. Clone the repository:

    git clone https://github.com/hszhao/semseg.git
  4. Train:

    • Download related datasets and symlink the paths to them as follows (you can alternatively modify the relevant paths specified in folder config):

      cd semseg
      mkdir -p dataset
      ln -s /path_to_ade20k_dataset dataset/ade20k
      
    • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization. Remember to use the right dataset format detailed in FAQ.md.

    • Specify the gpu used in config then do training:

      sh tool/train.sh ade20k pspnet50
    • If you are using SLURM for nodes manager, uncomment lines in train.sh and then do training:

      sbatch tool/train.sh ade20k pspnet50
  5. Test:

    • Download trained segmentation models and put them under folder specified in config or modify the specified paths.

    • For full testing (get listed performance):

      sh tool/test.sh ade20k pspnet50
    • Quick demo on one image:

      PYTHONPATH=./ python tool/demo.py --config=config/ade20k/ade20k_pspnet50.yaml --image=figure/demo/ADE_val_00001515.jpg TEST.scales '[1.0]'
  6. Visualization: tensorboardX incorporated for better visualization.

    tensorboard --logdir=exp/ade20k
  7. Other:

    • Resources: GoogleDrive LINK contains shared models, visual predictions and data lists.
    • Models: ImageNet pre-trained models and trained segmentation models can be accessed. Note that our ImageNet pretrained models are slightly different from original ResNet implementation in the beginning part.
    • Predictions: Visual predictions of several models can be accessed.
    • Datasets: attributes (names and colors) are in folder dataset and some sample lists can be accessed.
    • Some FAQs: FAQ.md.
    • Former video predictions: high accuracy -- PSPNet, PSANet; high efficiency -- ICNet.

Performance

Description: mIoU/mAcc/aAcc stands for mean IoU, mean accuracy of each class and all pixel accuracy respectively. ss denotes single scale testing and ms indicates multi-scale testing. Training time is measured on a sever with 8 GeForce RTX 2080 Ti. General parameters cross different datasets are listed below:

  • Train Parameters: sync_bn(True), scale_min(0.5), scale_max(2.0), rotate_min(-10), rotate_max(10), zoom_factor(8), ignore_label(255), aux_weight(0.4), batch_size(16), base_lr(1e-2), power(0.9), momentum(0.9), weight_decay(1e-4).
  • Test Parameters: ignore_label(255), scales(single: [1.0], multiple: [0.5 0.75 1.0 1.25 1.5 1.75]).
  1. ADE20K: Train Parameters: classes(150), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(100). Test Parameters: classes(150), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train (20210 images) set and test on val (2000 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.4189/0.5227/0.8039. 0.4284/0.5266/0.8106. 14h
    PSANet50 0.4229/0.5307/0.8032. 0.4305/0.5312/0.8101. 14h
    PSPNet101 0.4310/0.5375/0.8107. 0.4415/0.5426/0.8172. 20h
    PSANet101 0.4337/0.5385/0.8102. 0.4414/0.5392/0.8170. 20h
  2. PSACAL VOC 2012: Train Parameters: classes(21), train_h(473/465-PSP/A), train_w(473/465-PSP/A), epochs(50). Test Parameters: classes(21), test_h(473/465-PSP/A), test_w(473/465-PSP/A), base_size(512).

    • Setting: train on train_aug (10582 images) set and test on val (1449 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7705/0.8513/0.9489. 0.7802/0.8580/0.9513. 3.3h
    PSANet50 0.7725/0.8569/0.9491. 0.7787/0.8606/0.9508. 3.3h
    PSPNet101 0.7907/0.8636/0.9534. 0.7963/0.8677/0.9550. 5h
    PSANet101 0.7870/0.8642/0.9528. 0.7966/0.8696/0.9549. 5h
  3. Cityscapes: Train Parameters: classes(19), train_h(713/709-PSP/A), train_w(713/709-PSP/A), epochs(200). Test Parameters: classes(19), test_h(713/709-PSP/A), test_w(713/709-PSP/A), base_size(2048).

    • Setting: train on fine_train (2975 images) set and test on fine_val (500 images) set.
    Network mIoU/mAcc/aAcc(ss) mIoU/mAcc/pAcc(ms) Training Time
    PSPNet50 0.7730/0.8431/0.9597. 0.7838/0.8486/0.9617. 7h
    PSANet50 0.7745/0.8461/0.9600. 0.7818/0.8487/0.9622. 7.5h
    PSPNet101 0.7863/0.8577/0.9614. 0.7929/0.8591/0.9638. 10h
    PSANet101 0.7842/0.8599/0.9621. 0.7940/0.8631/0.9644. 10.5h

Citation

If you find the code or trained models useful, please consider citing:

@misc{semseg2019,
  author={Zhao, Hengshuang},
  title={semseg},
  howpublished={\url{https://github.com/hszhao/semseg}},
  year={2019}
}
@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}
@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Question

Some FAQ.md collected. You are welcome to send pull requests or give some advices. Contact information: hengshuangzhao at gmail.com.

Owner
Hengshuang Zhao
Hengshuang Zhao
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022