ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Related tags

Deep LearningShinRL
Overview

Status: Under development (expect bug fixes and huge updates)

ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

ShinRL is an open-source JAX library specialized for the evaluation of reinforcement learning (RL) algorithms from both theoretical and practical perspectives. Please take a look at the paper for details.

QuickStart

QuickStart Try ShinRL at: experiments/QuickStart.ipynb.

import gym
from shinrl import DiscreteViSolver
import matplotlib.pyplot as plt

# make an env & a config
env = gym.make("ShinPendulum-v0")
config = DiscreteViSolver.DefaultConfig(explore="eps_greedy", approx="nn", steps_per_epoch=10000)

# make mixins
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]

# (optional) arrange mixins
# mixins.insert(2, UserDefinedMixIn)

# make & run a solver
dqn_solver = DiscreteViSolver.factory(env, config, mixins)
dqn_solver.run()

# plot performance
returns = dqn_solver.scalars["Return"]
plt.plot(returns["x"], returns["y"])

# plot learned q-values  (act == 0)
q0 = dqn_solver.tb_dict["Q"][:, 0]
env.plot_S(q0, title="Learned")

# plot oracle q-values  (act == 0)
q0 = env.calc_q(dqn_solver.tb_dict["ExploitPolicy"])[:, 0]
env.plot_S(q0, title="Oracle")

# plot optimal q-values  (act == 0)
q0 = env.calc_optimal_q()[:, 0]
env.plot_S(q0, title="Optimal")

Pendulum Example

Key Modules

overview

ShinRL consists of two main modules:

  • ShinEnv: Implement relatively small MDP environments with access to the oracle quantities.
  • Solver: Solve the environments (e.g., finding the optimal policy) with specified algorithms.

🔬 ShinEnv for Oracle Analysis

  • ShinEnv provides small environments with oracle methods that can compute exact quantities:

    • calc_q computes a Q-value table containing all possible state-action pairs given a policy.
    • calc_optimal_q computes the optimal Q-value table.
    • calc_visit calculates state visitation frequency table, for a given policy.
    • calc_return is a shortcut for computing exact undiscounted returns for a given policy.
  • Some environments support continuous action space and image observation. See the following table and shinrl/envs/__init__.py for the available environments.

Environment Dicrete action Continuous action Image Observation Tuple Observation
ShinMaze ✔️ ✔️
ShinMountainCar-v0 ✔️ ✔️ ✔️ ✔️
ShinPendulum-v0 ✔️ ✔️ ✔️ ✔️
ShinCartPole-v0 ✔️ ✔️ ✔️

🏭 Flexible Solver by MixIn

MixIn

  • A "mixin" is a class which defines and implements a single feature. ShinRL's solvers are instantiated by mixing some mixins.
  • By arranging mixins, you can easily implement your own idea on the ShinRL's code base. See experiments/QuickStart.ipynb for example.
  • The following code demonstrates how different mixins turn into "value iteration" and "deep Q learning":
import gym
from shinrl import DiscreteViSolver

env = gym.make("ShinPendulum-v0")

# run value iteration (dynamic programming)
config = DiscreteViSolver.DefaultConfig(approx="tabular", explore="oracle")
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [TabularDpStepMixIn, QTargetMixIn, TbInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
vi_solver = DiscreteViSolver.factory(env, config, mixins)
vi_solver.run()

# run deep Q learning 
config = DiscreteViSolver.DefaultConfig(approx="nn", explore="eps_greedy")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

# ShinRL also provides deep RL solvers with OpenAI Gym environment supports.
env = gym.make("CartPole-v0")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TargetMixIn, NetActMixIn, NetInitMixIn, GymExploreMixIn, GymEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

Installation

git clone [email protected]:omron-sinicx/ShinRL.git
cd ShinRL
pip install -e .

Test

cd ShinRL
make test

Format

cd ShinRL
make format

Docker

cd ShinRL
docker-compose up

Citation

# Neurips DRL WS 2021 version
@inproceedings{toshinori2021shinrl,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    booktitle = {Proceedings of the NeurIPS Deep RL Workshop},
}

# Arxiv version
@article{toshinori2021shinrlArxiv,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    url = {https://arxiv.org/abs/2112.04123},
    journal={arXiv preprint arXiv:2112.04123},
}
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022